The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex

  • Daniela Brites
  • Sebastien Gagneux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1019)


The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.


co-evolution, virulence, adaptation, mutation 



We thank all the members of our group for the stimulating discussions. Work in our group is supported by the Swiss National Science Foundation (grants 310030_166687, IZRJZ3_164171 and IZLSZ3_170834), the European Research Council (309540-EVODRTB),, and the Novartis Foundation.


  1. Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E (2014) Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc B 369(1645). doi:ARTN 20130428.  10.1098/rstb.2013.0428
  2. Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70. doi: 10.1146/annurev.micro.62.081307.162832 PubMedGoogle Scholar
  3. Ansari MA, Pedergnana V, C LCI, Magri A, Von Delft A, Bonsall D, Chaturvedi N, Bartha I, Smith D, Nicholson G, McVean G, Trebes A, Piazza P, Fellay J, Cooke G, Foster GR, Consortium S-H, Hudson E, McLauchlan J, Simmonds P, Bowden R, Klenerman P, Barnes E, Spencer CCA (2017) Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet 49(5):666–673. doi: 10.1038/ng.3835 PubMedGoogle Scholar
  4. Asante-Poku A, Yeboah-Manu D, Otchere ID, Aboagye SY, Stucki D, Hattendorf J, Borrell S, Feldmann J, Danso E, Gagneux S (2015) Mycobacterium africanum is associated with patient ethnicity in Ghana. PLoS Negl Trop Dis 9(1):e3370. doi: 10.1371/journal.pntd.0003370 PubMedPubMedCentralGoogle Scholar
  5. Asante-Poku A, Otchere ID, Osei-Wusu S, Sarpong E, Baddoo A, Forson A, Laryea C, Borrell S, Bonsu F, Hattendorf J, Ahorlu C, Koram KA, Gagneux S, Yeboah-Manu D (2016) Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect Dis 16:385. doi: 10.1186/s12879-016-1725-6 PubMedPubMedCentralGoogle Scholar
  6. Azad AK, Sadee W, Schlesinger LS (2012) Innate immune gene polymorphisms in tuberculosis. Infect Immun 80(10):3343–3359. doi: 10.1128/IAI.00443-12 PubMedPubMedCentralGoogle Scholar
  7. Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10(9):1568–1577. doi: 10.3201/eid1009.040046 PubMedPubMedCentralGoogle Scholar
  8. Baker O, Lee OY, Wu HH, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O'Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer D, Le Mort F, Perrin P, Gourichon L, Dutailly B, Palfi G, Coqueugniot H, Dutour O (2015) Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb) 95(Suppl 1):S4–S12. doi: 10.1016/ Google Scholar
  9. Barnes I, Duda A, Pybus OG, Thomas MG (2011) Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65(3):842–848. doi: 10.1111/j.1558-5646.2010.01132.x PubMedGoogle Scholar
  10. Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7(12):845–855. doi: 10.1038/nrmicro2236 PubMedPubMedCentralGoogle Scholar
  11. Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M, Haas DW, Martinez-Picado J, Dalmau J, Lopez-Galindez C, Casado C, Rauch A, Gunthard HF, Bernasconi E, Vernazza P, Klimkait T, Yerly S, O'Brien SJ, Listgarten J, Pfeifer N, Lippert C, Fusi N, Kutalik Z, Allen TM, Muller V, Harrigan PR, Heckerman D, Telenti A, Fellay J (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. elife 2:e01123. doi: 10.7554/eLife.01123 PubMedPubMedCentralGoogle Scholar
  12. Behr MA (2015) Comparative genomics of mycobacteria: some answers, yet more new questions. Cold Spring Harb Perspect Med 5(2):a021204. doi: 10.1101/cshperspect.a021204 PubMedCentralGoogle Scholar
  13. Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449(7164):843–849. doi: 10.1038/nature06198 PubMedGoogle Scholar
  14. Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Homke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Bottger EC (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988. doi: 10.1056/NEJMc1505196 PubMedPubMedCentralGoogle Scholar
  15. Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin E, Pourcel C, Vergnaud G (2014) Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 20(1):21–28. doi: 10.3201/eid2001.130652 PubMedPubMedCentralGoogle Scholar
  16. Bolotin E, Hershberg R (2015) Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol 7(8):2173–2187. doi: 10.1093/gbe/evv135 PubMedPubMedCentralGoogle Scholar
  17. Boritsch EC, Khanna V, Pawlik A, Honore N, Navas VH, Ma L, Bouchier C, Seemann T, Supply P, Stinear TP, Brosch R (2016) Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 113(35):9876–9881. doi: 10.1073/pnas.1604921113 PubMedPubMedCentralGoogle Scholar
  18. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Steadman DLW, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497. doi: 10.1038/nature13591 PubMedPubMedCentralGoogle Scholar
  19. Brites D, Gagneux S (2012) Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol 12(4):678–685. doi: 10.1016/j.meegid.2011.08.010 PubMedGoogle Scholar
  20. Brites D, Gagneux S (2015) Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264(1):6–24. doi: 10.1111/imr.12264 PubMedPubMedCentralGoogle Scholar
  21. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99(6):3684–3689. doi: 10.1073/pnas.052548299 PubMedPubMedCentralGoogle Scholar
  22. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT, Stepniewska K, Huyen MN, Bang ND, Loc TH, Gagneux S, van Soolingen D, Kremer K, van der Sande M, Small P, Anh PT, Chinh NT, Quy HT, Duyen NT, Tho DQ, Hieu NT, Torok E, Hien TT, Dung NH, Nhu NT, Duy PM, van Vinh CN, Farrar J (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4(3):e1000034. doi: 10.1371/journal.ppat.1000034 PubMedPubMedCentralGoogle Scholar
  23. Chisholm RH, Trauer JM, Curnoe D, Tanaka MM (2016) Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci U S A 113(32):9051–9056. doi: 10.1073/pnas.1603224113 PubMedPubMedCentralGoogle Scholar
  24. Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9(3):e91024. doi: 10.1371/journal.pone.0091024 PubMedPubMedCentralGoogle Scholar
  25. Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigao J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG (2014) A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. doi: 10.1038/ncomms5812 PubMedPubMedCentralGoogle Scholar
  26. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5(10):e1000600. doi: 10.1371/journal.ppat.1000600 PubMedPubMedCentralGoogle Scholar
  27. Comas I, Gagneux S (2011) A role for systems epidemiology in tuberculosis research. Trends Microbiol 19(10):492–500. doi: 10.1016/j.tim.2011.07.002 PubMedPubMedCentralGoogle Scholar
  28. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42(6):498–503. doi: 10.1038/ng.590 PubMedPubMedCentralGoogle Scholar
  29. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110. doi: 10.1038/ng.1038 Google Scholar
  30. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei LH, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182. doi: 10.1038/ng.2744 PubMedPubMedCentralGoogle Scholar
  31. Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, Tschopp R, Ameni G, Hewinson RG, Robertson BD, Goig GA, Stucki D, Gagneux S, Aseffa A, Young D, Berg S (2015) Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa. Curr Biol 25(24):3260–3266. doi: 10.1016/j.cub.2015.10.061 PubMedPubMedCentralGoogle Scholar
  32. Copin R, Coscolla M, Efstathiadis E, Gagneux S, Ernst JD (2014) Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 32(45):5998–6004. doi: 10.1016/j.vaccine.2014.07.113 PubMedPubMedCentralGoogle Scholar
  33. Copin R, Wang XY, Louie E, Escuyer V, Coscolla M, Gagneux S, Palmer GH, Ernst JD (2016) Within host evolution selects for a dominant genotype of Mycobacterium tuberculosis while T cells increase pathogen genetic diversity. PLoS Pathog 12(12). doi:ARTN e1006111.  10.1371/journal.ppat.1006111
  34. Coscolla M, Gagneux S (2010) Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7(1):e43–e59. doi: 10.1016/j.ddmec.2010.09.004 PubMedPubMedCentralGoogle Scholar
  35. Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26(6):431–444. doi: 10.1016/j.smim.2014.09.012 PubMedPubMedCentralGoogle Scholar
  36. Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, Dabrowski PW, Radonic A, Niemann S, Parkhill J, Couacy-Hymann E, Feldman J, Comas I, Boesch C, Gagneux S, Leendertz FH (2013) Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg Infect Dis 19(6):969–976. doi: 10.3201/eid1906.121012 PubMedPubMedCentralGoogle Scholar
  37. Coscolla M, Copin R, Sutherland J, Gehre F, de Jong B, Owolabi O, Mbayo G, Giardina F, Ernst JD, Gagneux S (2015) M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18(5):538–548. doi: 10.1016/j.chom.2015.10.008 PubMedPubMedCentralGoogle Scholar
  38. de Jong BC, Hill PC, Brookes RH, Otu JK, Peterson KL, Small PM, Adegbola RA (2005) Mycobacterium africanum: a new opportunistic pathogen in HIV infection? AIDS 19(15):1714–1715PubMedGoogle Scholar
  39. de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, McAdam KP, Corrah T, Small PM, Adegbola RA (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198(7):1037–1043. doi: 10.1086/591504 PubMedPubMedCentralGoogle Scholar
  40. de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M, Ota M, Adegbola RA (2010a) Differences between tuberculosis cases infected with Mycobacterium africanum, West African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS Immunol Med Microbiol 58(1):102–105. doi: 10.1111/j.1574-695X.2009.00628.x PubMedGoogle Scholar
  41. de Jong BC, Antonio M, Gagneux S (2010b) Mycobacterium africanum – review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 4(9):e744. doi: 10.1371/journal.pntd.0000744 PubMedPubMedCentralGoogle Scholar
  42. de Vos M, Muller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC (2013) Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57(2):827–832. doi: 10.1128/Aac.01541-12 PubMedPubMedCentralGoogle Scholar
  43. Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N (2012) SITVITWEB – a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12(4):755–766. doi: 10.1016/j.meegid.2012.02.004 PubMedGoogle Scholar
  44. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ (2016) Within-host evolution of bacterial pathogens. Nat Rev Microbiol 14(3):150–162. doi: 10.1038/nrmicro.2015.13 PubMedPubMedCentralGoogle Scholar
  45. Donoghue HD, Hershkovitz I, Minnikin DE, Besra GS, Lee OYC, Galili E, Greenblatt CL, Lemma E, Spigelman M, Bar-Gal GK (2009) Biomolecular archaeology of ancient tuberculosis: response to “Deficiencies and challenges in the study of ancient tuberculosis DNA” by Wilbur et al. (2009). J Archaeol Sci 36(12):2797–2804. doi: 10.1016/j.jas.2009.09.007 Google Scholar
  46. Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003) Measurably evolving populations. Trends Ecol Evol 18(9):481–488. doi: 10.1016/S0169-5347(03)00216-7 Google Scholar
  47. Duchene S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC (2016) Genome-scale rates of evolutionary change in bacteria. Microb Genom 2(11):e000094. doi: 10.1099/mgen.0.000094 PubMedPubMedCentralGoogle Scholar
  48. Dye C, Lonnroth K, Jaramillo E, Williams BG, Raviglione M (2009) Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ 87(9):683–691. doi: 10.2471/Blt.08.058453 PubMedPubMedCentralGoogle Scholar
  49. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsaker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F (2014) Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15(11):490. doi: 10.1186/s13059-014-0490-3 PubMedPubMedCentralGoogle Scholar
  50. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, Balloux F (2015) Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6:7119. doi: 10.1038/ncomms8119 PubMedPubMedCentralGoogle Scholar
  51. Eldholm V, Pettersson JH, Brynildsrud OB, Kitchen A, Rasmussen EM, Lillebaek T, Ronning JO, Crudu V, Mengshoel AT, Debech N, Alfsnes K, Bohlin J, Pepperell CS, Balloux F (2016) Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113(48):13881–13886. doi: 10.1073/pnas.1611283113 PubMedPubMedCentralGoogle Scholar
  52. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591. doi: 10.1038/nri3259 PubMedGoogle Scholar
  53. Esmail H, Barry CE 3rd, Young DB, Wilkinson RJ (2014) The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond Ser B Biol Sci 369(1645):20130437. doi: 10.1098/rstb.2013.0437 Google Scholar
  54. Fenner L, Egger M, Bodmer T, Furrer H, Ballif M, Battegay M, Helbling P, Fehr J, Gsponer T, Rieder HL, Zwahlen M, Hoffmann M, Bernasconi E, Cavassini M, Calmy A, Dolina M, Frei R, Janssens JP, Borrell S, Stucki D, Schrenzel J, Bottger EC, Gagneux S, Swiss HIVC, Molecular Epidemiology of Tuberculosis Study G (2013) HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 9(3):e1003318. doi: 10.1371/journal.pgen.1003318 PubMedPubMedCentralGoogle Scholar
  55. Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, Gadisa E, Kiros T, Habtamu M, Hussein J, Zinsstag J, Robertson BD, Ameni G, Lohan AJ, Loftus B, Comas I, Gagneux S, Tschopp R, Yamuah L, Hewinson G, Gordon SV, Young DB, Aseffa A (2013) Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis 19(3):460–463. doi: 10.3201/eid1903.120256 PubMedPubMedCentralGoogle Scholar
  56. Flynn J, Chan J (2005) What’s good for the host is good for the bug. Trends Microbiol 13:98–102PubMedGoogle Scholar
  57. Flynn JL, Gideon HP, Mattila JT, Lin PL (2015) Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264(1):60–73. doi: 10.1111/imr.12258 PubMedPubMedCentralGoogle Scholar
  58. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43(5):482–486. doi: 10.1038/ng.811 PubMedPubMedCentralGoogle Scholar
  59. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45(7):784–790. doi: 10.1038/ng.2656 PubMedPubMedCentralGoogle Scholar
  60. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233. doi: 10.1146/annurev.ecolsys.19.1.207 Google Scholar
  61. Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond Ser B Biol Sci 367(1590):850–859. doi: 10.1098/rstb.2011.0316 Google Scholar
  62. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337. doi: 10.1016/S1473-3099(07)70108-1 PubMedGoogle Scholar
  63. Gagneux S, Burgos MV, DeRiemer K, Encisco A, Munoz S, Hopewell PC, Small PM, Pym AS (2006a) Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2(6):e61. doi: 10.1371/journal.ppat.0020061 PubMedPubMedCentralGoogle Scholar
  64. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM (2006b) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103(8):2869–2873. doi: 10.1073/pnas.0511240103 PubMedPubMedCentralGoogle Scholar
  65. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15(2):211–214. doi: 10.1038/nm.1915 PubMedPubMedCentralGoogle Scholar
  66. Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C, Moreau F, Laval F, Daffe M, Martin C, Brosch R, Guilhot C (2014) Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A 111(31):11491–11496. doi: 10.1073/pnas.1406693111 PubMedPubMedCentralGoogle Scholar
  67. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32(3):643–655PubMedGoogle Scholar
  68. Grant AV, Sabri A, Abid A, Abderrahmani Rhorfi I, Benkirane M, Souhi H, Naji Amrani H, Alaoui-Tahiri K, Gharbaoui Y, Lazrak F, Sentissi I, Manessouri M, Belkheiri S, Zaid S, Bouraqadi A, El Amraoui N, Hakam M, Belkadi A, Orlova M, Boland A, Deswarte C, Amar L, Bustamante J, Boisson-Dupuis S, Casanova JL, Schurr E, El Baghdadi J, Abel L (2016) A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet 135(3):299–307. doi: 10.1007/s00439-016-1633-2 PubMedPubMedCentralGoogle Scholar
  69. Groschel MI, Sayes F, Simeone R, Majlessi L, Brosch R (2016) ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14(11):677–691. doi: 10.1038/nrmicro.2016.131 PubMedGoogle Scholar
  70. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5. doi: 10.1371/journal.ppat.0010005 PubMedPubMedCentralGoogle Scholar
  71. Gygli SM, Borrell S, Trauner A, Gagneux S (2017) Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 41(3):354–373. doi: 10.1093/femsre/fux011 PubMedGoogle Scholar
  72. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311. doi: 10.1371/journal.pbio.0060311 PubMedPubMedCentralGoogle Scholar
  73. Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M (2008) Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One 3(10):e3426. doi: 10.1371/journal.pone.0003426 PubMedPubMedCentralGoogle Scholar
  74. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101(14):4871–4876. doi: 10.1073/pnas.0305627101 PubMedPubMedCentralGoogle Scholar
  75. Houben RM, Dodd PJ (2016) The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 13(10):e1002152. doi: 10.1371/journal.pmed.1002152 PubMedPubMedCentralGoogle Scholar
  76. Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O (2008) Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol 16(7):303–308. doi: 10.1016/j.tim.2008.04.005 PubMedGoogle Scholar
  77. Kaiser VB, Charlesworth B (2009) The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet 25(1):9–12. doi: 10.1016/j.tig.2008.10.009 PubMedGoogle Scholar
  78. Karlsson EK, Kwiatkowski DP, Sabeti PC (2014) Natural selection and infectious disease in human populations. Nat Rev Genet 15(6):379–393. doi: 10.1038/nrg3734 PubMedPubMedCentralGoogle Scholar
  79. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x Google Scholar
  80. Kay GL, Sergeant MJ, Zhou Z, Chan JZ, Millard A, Quick J, Szikossy I, Pap I, Spigelman M, Loman NJ, Achtman M, Donoghue HD, Pallen MJ (2015) Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun 6:6717. doi: 10.1038/ncomms7717 PubMedPubMedCentralGoogle Scholar
  81. Koch A, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Warner DF, Mizrahi V, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ (2017) The influence of HIV on the evolution of Mycobacterium tuberculosis. Mol Biol Evol. doi: 10.1093/molbev/msx107
  82. Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM (2014) Disrupted human-pathogen co-evolution: a model for disease. Front Genet 5. doi:UNSP 290. doi: 10.3389/fgene.2014.00290
  83. Koeck JL, Fabre M, Simon F, Daffe M, Garnotel E, Matan AB, Gerome P, Bernatas JJ, Buisson Y, Pourcel C (2011) Clinical characteristics of the smooth tubercle bacilli ‘Mycobacterium canettii’ infection suggest the existence of an environmental reservoir. Clin Microbiol Infect 17(7):1013–1019. doi: 10.1111/j.1469-0691.2010.03347.x PubMedGoogle Scholar
  84. Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–378. doi: 10.1128/Cmr.00042-10 PubMedPubMedCentralGoogle Scholar
  85. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R (2014) Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet 46(1):82–87. doi: 10.1038/ng.2848 PubMedGoogle Scholar
  86. Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, Cohen T, Kishony R (2016) Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med. doi: 10.1038/nm.4205
  87. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20(1):75. doi: 10.1038/nm.3412 PubMedGoogle Scholar
  88. Lindestam Arlehamn CS, Paul S, Mele F, Huang C, Greenbaum JA, Vita R, Sidney J, Peters B, Sallusto F, Sette A (2015) Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci U S A 112(2):E147–E155. doi: 10.1073/pnas.1416537112 PubMedGoogle Scholar
  89. Lipsitch M, Sousa AO (2002) Historical intensity of natural selection for resistance to tuberculosis. Genetics 161(4):1599–1607PubMedPubMedCentralGoogle Scholar
  90. Lonnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M (2009) Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 68(12):2240–2246. doi: 10.1016/j.socscimed.2009.03.041 PubMedGoogle Scholar
  91. Lovejoy PE (1989) The impact of the Atlantic slave-trade on Africa – a review of the literature. J Afr Hist 30(3):365–394Google Scholar
  92. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A 112(26):8136–8141. doi: 10.1073/pnas.1424063112 PubMedPubMedCentralGoogle Scholar
  93. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JT, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Paabo S, Kelso J, Patterson N, Reich D (2016) The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature 538(7624):201–206. doi: 10.1038/nature18964 PubMedPubMedCentralGoogle Scholar
  94. Malm S, Linguissi LS, Tekwu EM, Vouvoungui JC, Kohl TA, Beckert P, Sidibe A, Rusch-Gerdes S, Madzou-Laboum IK, Kwedi S, Penlap Beng V, Frank M, Ntoumi F, Niemann S (2017) New Mycobacterium tuberculosis complex sublineage, Brazzaville, Congo. Emerg Infect Dis 23(3):423–429. doi: 10.3201/eid2303.160679 PubMedPubMedCentralGoogle Scholar
  95. Marvig RL, Sommer LM, Molin S, Johansen HK (2015) Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47(1):57–64. doi: 10.1038/ng.3148 PubMedGoogle Scholar
  96. May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. P Roy Soc Lond a Mat 390(1798):219–219Google Scholar
  97. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum MG, Rusch-Gerdes S, Mokrousov I, Aleksic E, Allix-Beguec C, Antierens A, Augustynowicz-Kopec E, Ballif M, Barletta F, Beck HP, Barry CE 3rd, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebaek T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T (2015) Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47(3):242–249. doi: 10.1038/ng.3195 PubMedGoogle Scholar
  98. Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, Arikawa K, Sinkov V, Umpeleva T, Valcheva V, Alvarez Figueroa M, Ranka R, Jansone I, Ogarkov O, Zhuravlev V, Narvskaya O (2016) Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: human traces across pathogen’s phylogeography. Mol Phylogenet Evol 99:133–143. doi: 10.1016/j.ympev.2016.03.020 PubMedGoogle Scholar
  99. Moller M, Hoal EG (2010) Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb) 90(2):71–83. doi: 10.1016/ Google Scholar
  100. Murray GG, Wang F, Harrison EM, Paterson GK, Mather AE, Harris SR, Holmes MA, Rambaut A, Welch JJ (2016) The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 7(1):80–89. doi: 10.1111/2041-210X.12466 PubMedGoogle Scholar
  101. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527. doi: 10.1146/annurev-immunol-032712-095939 PubMedGoogle Scholar
  102. O’Neill MB, Mortimer TD, Pepperell CS (2015) Diversity of Mycobacterium tuberculosis across evolutionary scales. PLoS Pathog 11(11):e1005257. doi: 10.1371/journal.ppat.1005257 PubMedPubMedCentralGoogle Scholar
  103. Orlando L, Gilbert MT, Willerslev E (2015) Reconstructing ancient genomes and epigenomes. Nat Rev Genet 16(7):395–408. doi: 10.1038/nrg3935 PubMedGoogle Scholar
  104. Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57–63. doi: 10.1038/ni.3048 PubMedGoogle Scholar
  105. Osorio NS, Rodrigues F, Gagneux S, Pedrosa J, Pinto-Carbo M, Castro AG, Young D, Comas I, Saraiva M (2013) Evidence for diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Mol Biol Evol 30(6):1326–1336. doi: 10.1093/molbev/mst038 PubMedGoogle Scholar
  106. Paulson T (2013) Epidemiology: a mortal foe. Nature 502(7470):S2–S3. doi: 10.1038/502S2a PubMedGoogle Scholar
  107. Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B, Galagan J, Feldman MW (2013) The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 9(8):e1003543. doi: 10.1371/journal.ppat.1003543 PubMedPubMedCentralGoogle Scholar
  108. Perez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E, Garcia-de-Viedma D (2014) Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis 209(1):98–108. doi: 10.1093/infdis/jit439 PubMedGoogle Scholar
  109. Qu HQ, Li Q, McCormick JB, Fisher-Hoch SP (2011) What did we learn from the genome-wide association study for tuberculosis susceptibility? J Med Genet 48(4):217–218. doi: 10.1136/jmg.2010.087361 PubMedPubMedCentralGoogle Scholar
  110. Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S, Domenech P, Zwerling A, Thibert L, Menzies D, Schwartzman K, Behr MA (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47(4):1119–1128. doi: 10.1128/JCM.02142-08 PubMedPubMedCentralGoogle Scholar
  111. Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3(4):241–251. doi: 10.1038/nrg760 PubMedGoogle Scholar
  112. Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, Wirth T, Jaenicke S, Schuback S, Rusch-Gerdes S, Supply P, Kalinowski J, Niemann S (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10(2):e1001387. doi: 10.1371/journal.pmed.1001387 PubMedPubMedCentralGoogle Scholar
  113. Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB (2013) Mapping of genotype-phenotype diversity among clinical isolates of mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 5(10):1849–1862. doi: 10.1093/gbe/evt138 PubMedPubMedCentralGoogle Scholar
  114. Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D (2001) Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33(3):305–311. doi: 10.1086/321886 PubMedGoogle Scholar
  115. Russell DG, Barry CE 3rd, Flynn JL (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science 328(5980):852–856. doi: 10.1126/science.1184784 PubMedPubMedCentralGoogle Scholar
  116. Salie M, van der Merwe L, Moller M, Daya M, van der Spuy G, van Helden PD, Martin MP, Gao XJ, Warren RM, Carrington M, Hoal EG (2014) Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. Int J Infect Dis 21:300–300. doi: 10.1016/j.ijid.2014.03.1043 Google Scholar
  117. Sharma A, Bloss E, Heilig CM, Click ES (2016) Tuberculosis caused by Mycobacterium africanum, United States, 2004–2013. Emerg Infect Dis 22(3):396–403. doi: 10.3201/eid2203.151505 PubMedPubMedCentralGoogle Scholar
  118. Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272(5268):1641–1643PubMedGoogle Scholar
  119. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35PubMedGoogle Scholar
  120. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7(7):537–544. doi: 10.1038/nrmicro2165 PubMedGoogle Scholar
  121. Stead WW (1998) Tuberculosis in Africa. Int J Tuberc Lung Dis 2(10):791–792PubMedGoogle Scholar
  122. Stead WW (2001) Variation in vulnerability to tuberculosis in America today: random, or legacies of different ancestral epidemics? Int J Tuberc Lung Dis 5(9):807–814PubMedGoogle Scholar
  123. Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322(7):422–427. doi: 10.1056/NEJM199002153220702 PubMedGoogle Scholar
  124. Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Vilanova GT, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Boom WH, Basu I, Bower J, Saraiva M, Vasconcellos SE, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Ndung’u PW, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Carter EJ, Diero L, Supply P, Comas I, Niemann S, Gagneux S (2016) Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. doi: 10.1038/ng.3704
  125. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45(2):172–179. doi: 10.1038/ng.2517 PubMedGoogle Scholar
  126. Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B, Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC, Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A, African TBGC, Wellcome Trust Case Control C, Morris AP, Meyer CG, Horstmann RD, Hill AV (2010) Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42(9):739–741. doi: 10.1038/ng.639 PubMedPubMedCentralGoogle Scholar
  127. Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Rusch-Gerdes S, Horstmann RD, Ehlers S, Meyer CG (2011) Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6(6):e20908. doi: 10.1371/journal.pone.0020908 PubMedPubMedCentralGoogle Scholar
  128. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ (2011) Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One 6(4):e17601. doi: 10.1371/journal.pone.0017601 PubMedPubMedCentralGoogle Scholar
  129. Trauner A, Borrell S, Reither K, Gagneux S (2014) Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 74(10):1063–1072. doi: 10.1007/s40265-014-0248-y PubMedPubMedCentralGoogle Scholar
  130. Trauner A, Liu Q, Via LE, Liu X, Ruan X, Liang L, Shi H, Chen Y, Wang Z, Liang R, Zhang W, Wei W, Gao J, Sun G, Brites D, England K, Zhang G, Gagneux S, Barry CE 3rd, Gao Q (2017) The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol 18(1):71. doi: 10.1186/s13059-017-1196-0 PubMedPubMedCentralGoogle Scholar
  131. Underhill PA, Kivisild T (2007) Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–564. doi: 10.1146/annurev.genet.41.110306.130407 PubMedGoogle Scholar
  132. Veyrier FJ, Dufort A, Behr MA (2011) The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol 19(4):156–161. doi: 10.1016/j.tim.2010.12.008 PubMedGoogle Scholar
  133. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13(2):137–146. doi: 10.1016/S1473-3099(12)70277-3 PubMedPubMedCentralGoogle Scholar
  134. Wampande EM, Mupere E, Debanne SM, Asiimwe BB, Nsereko M, Mayanja H, Eisenach K, Kaplan G, Boom HW, Gagneux S, Joloba ML (2013) Long-term dominance of Mycobacterium tuberculosis Uganda family in peri-urban Kampala-Uganda is not associated with cavitary disease. BMC Infect Dis 13:484. doi: 10.1186/1471-2334-13-484 PubMedPubMedCentralGoogle Scholar
  135. Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, Brosch R, Rocha EP, Veyrier FJ, Behr MA (2015) Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 7(3):856–870. doi: 10.1093/gbe/evv035 PubMedPubMedCentralGoogle Scholar
  136. WHO (2016) Global tuberculosis report 2016. World Health Organization, GenevaGoogle Scholar
  137. Wilbur AK, Bouwman AS, Stone AC, Roberts CA, Pfister LA, Buikstra JE, Brown TA (2009) Deficiencies and challenges in the study of ancient tuberculosis DNA. J Archaeol Sci 36(9):1990–1997. doi: 10.1016/j.jas.2009.05.020 Google Scholar
  138. Wilkipedia Ewe People (n.d.)
  139. Williams AC, Dunbar RI (2014) Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med Hypotheses 83(1):79–87. doi: 10.1016/j.mehy.2014.04.003 PubMedGoogle Scholar
  140. Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, van Soolingen D, Rusch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160. doi: 10.1371/journal.ppat.1000160 PubMedPubMedCentralGoogle Scholar
  141. Woolhouse M, Gaunt E (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33(4):231–242. doi: 10.1080/10408410701647560 PubMedGoogle Scholar
  142. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32(4):569–577. doi: 10.1038/ng1202-569 PubMedGoogle Scholar
  143. Worby CJ, Lipsitch M, Hanage WP (2014) Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol 10(3):e1003549. doi: 10.1371/journal.pcbi.1003549 PubMedPubMedCentralGoogle Scholar
  144. Young DB, Perkins MD, Duncan K, Barry CE 3rd (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118(4):1255–1265. doi: 10.1172/JCI34614 PubMedPubMedCentralGoogle Scholar
  145. Yruela I, Contreras-Moreira B, Magalhaes C, Osorio NS, Gonzalo-Asensio J (2016) Mycobacterium tuberculosis complex exhibits lineage-specific variations affecting protein ductility and epitope recognition. Genome Biol Evol 8(12):3751–3764. doi: 10.1093/gbe/evw279 PubMedPubMedCentralGoogle Scholar
  146. Zheng NB, Whalen CC, Handel A (2014) Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency. PLoS One 9 (8). doi:ARTN e105721.  10.1371/journal.pone.0105721
  147. Zumla A, Maeurer M, Host-Directed Therapies N, Chakaya J, Hoelscher M, Ntoumi F, Rustomjee R, Vilaplana C, Yeboah-Manu D, Rasolof V, Munderi P, Singh N, Aklillu E, Padayatchi N, Macete E, Kapata N, Mulenga M, Kibiki G, Mfinanga S, Nyirenda T, Maboko L, Garcia-Basteiro A, Rakotosamimanana N, Bates M, Mwaba P, Reither K, Gagneux S, Edwards S, Mfinanga E, Abdulla S, Cardona PJ, Russell JB, Gant V, Noursadeghi M, Elkington P, Bonnet M, Menendez C, Dieye TN, Diarra B, Maiga A, Aseffa A, Parida S, Wejse C, Petersen E, Kaleebu P, Oliver M, Craig G, Corrah T, Tientcheu L, Antonio M, Rao M, McHugh TD, Sheikh A, Ippolito G, Ramjee G, Kaufmann SH, Churchyard G, Steyn A, Grobusch M, Sanne I, Martinson N, Madansein R, Wilkinson RJ, Mayosi B, Schito M, Wallis RS (2015) Towards host-directed therapies for tuberculosis. Nat Rev Drug Discov 14(8):511–512. doi: 10.1038/nrd4696 PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Swiss Tropical and Public Health InstituteBaselSwitzerland
  2. 2.University of BaselBaselSwitzerland
  3. 3.Swiss Tropical and Public Health InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations