Predicting the Evolution of Narratives in Social Media

  • Klaus Arthur Schmid
  • Andreas Züfle
  • Dieter Pfoser
  • Andrew Crooks
  • Arie Croitoru
  • Anthony Stefanidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10411)

Abstract

The emergence of global networking capabilities (e.g. social media) has provided newfound mechanisms and avenues for information to be generated, disseminated, shaped, and consumed. The spread and evolution of online information represents a unique narrative ecosystem that is facilitated by cyberspace but operates at the nexus of three dimensions: the social network, the contextual, and the spatial. Current approaches to predict patterns of information spread across social media primarily focus on the social network dimension of the problem. The novel challenge formulated in this work is to blend the social, spatial, and contextual dimensions of online narratives in order to support high fidelity simulations that are contextually informed by past events, and support the multi-granular, reconfigural and dynamic prediction of the dissemination of a new narrative.

References

  1. 1.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: WWW, pp. 519–528. ACM (2012)Google Scholar
  2. 2.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the Flickr social network. In: WWW, pp. 721–730. ACM (2009)Google Scholar
  3. 3.
    Lymperopoulos, I.N., Ioannou, G.D.: Online social contagion modeling through the dynamics of integrate-and-fire neurons. Inf. Sci. 320, 26–61 (2015)CrossRefGoogle Scholar
  4. 4.
    Mahajan, V., Muller, E., Wind, Y.: New-Product Diffusion Models, vol. 11. Springer, New York (2000)Google Scholar
  5. 5.
    Pires, B., Crooks, A.T.: Modeling the emergence of riots: a geosimulation approach. Comput. Environ. Urban Syst. 61(Part A), 66–80 (2017)CrossRefGoogle Scholar
  6. 6.
    Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Manag. Sci. 54(5), 998–1014 (2008)CrossRefGoogle Scholar
  7. 7.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)Google Scholar
  8. 8.
    Schmid, K.A., Frey, C., Peng, F., Weiler, M., Züfle, A., Chen, L., Renz, M.: TrendTracker: modelling the motion of trends in space and time. In: SSTDM@ICDM Workshop, pp. 1145–1152 (2016)Google Scholar
  9. 9.
    Unankard, S., Li, X., Sharaf, M.A.: Emerging event detection in social networks with location sensitivity. World Wide Web 18(5), 1393–1417 (2015)CrossRefGoogle Scholar
  10. 10.
    Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering. In: SIGMOD, pp. 505–516. ACM (2012)Google Scholar
  11. 11.
    Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J. 23(3), 381–400 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Klaus Arthur Schmid
    • 1
  • Andreas Züfle
    • 2
  • Dieter Pfoser
    • 2
  • Andrew Crooks
    • 2
  • Arie Croitoru
    • 2
  • Anthony Stefanidis
    • 2
  1. 1.Institute of InformaticsLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Department for Geography and Geoinformation Science, Center for Geospatial IntelligenceGeorge Mason UniversityFairfaxUSA

Personalised recommendations