Application of Solid Wastes for the Production of Sustainable Concrete

  • Vasudha D. Katare
  • Mangesh V. Madurwar
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 7)


The production of concrete results in emissions of about 0.13 t of CO2 per ton of concrete, equal to 1/9th the emissions of cement. The tremendous usage of conventional raw material creates a negative impact on the concrete industry which can be minimized by the application of solid wastes as a raw material. The present paper reviews various solid wastes in different compositions to develop sustainable concrete. In view of the utilization of agro-industrial wastes as a pozzolanic material, their physical and chemical characterizations were reviewed. The crushing strength of high strength concrete incorporated with various agro-industrial wastes as a pozzolanic material was studied. This paper also proposes a procedure for producing manufactured coarse aggregates made of solid waste (i.e. sediment dredged from dam reservoir). The crushing strength of concrete incorporating the manufactured coarse aggregates was experimentally measured. Along with it, the physico-mechanical properties of the artificial sand, produced using the industrial solid wastes (i.e. fly ash) were analyzed. Reusing of solid waste as a substitute raw material will not only solve its disposal problems but also serves as an economical option to develop the sustainable concrete. The present paper is useful for various researchers involved in using solid wastes to develop the sustainable concrete.


Solid waste Sustainable concrete Reservoir sediment Agro-industrial waste 


  1. 1.
    Singh J, Gu S (2010) Biomass conversion to energy in India-A critique. Renew Sustain Energy Rev 14(5):1367–1378. doi: 10.1016/j.rser.2010.01.013CrossRefGoogle Scholar
  2. 2.
    Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42(6):2311–2320. doi: 10.1016/j.buildenv.2006.04.015CrossRefGoogle Scholar
  3. 3.
    Akram T, Memon SA, Obaid H (2009) Production of lowcost self compacting concrete using bagasse ash. Constr Build Mater 23:703–712. doi: 10.1016/j.conbuildmat.2008.02.012CrossRefGoogle Scholar
  4. 4.
    Prasad CS, Maiti KN, Venugopal R (2001) Effect of rice husk ash in whiteware compositions. Ceram Int 27:629–635. doi: 10.1016/S0272-8842(01)00010-4CrossRefGoogle Scholar
  5. 5.
    Aprianti E, Shafigh P, Bahri S, Farahani JN (2015) Supplementary cementitious materials origin from agricultural wastes—a review. Constr Build Mater 74:176–187. doi: 10.1016/j.conbuildmat.2014.10.010CrossRefGoogle Scholar
  6. 6.
    Ganesan K, Rajagopal K, Thangavel K (2007) Evaluation of bagasse ash as supplementary cementitious material. Cem Concr Compos 29(6):515–524. doi: 10.1016/j.cemconcomp.2007.03.001CrossRefGoogle Scholar
  7. 7.
    Rukzon S, Chindaprasirt P (2012) Utilization of bagasse ash in high-strength concrete. Mater Des 34:45–50. doi: 10.1016/j.matdes.2011.07.045CrossRefGoogle Scholar
  8. 8.
    Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Application of agro-waste for sustainable construction materials: a review. Constr Build Mater 38:872–878. doi: 10.1016/j.conbuildmat.2012.09.011CrossRefGoogle Scholar
  9. 9.
    Singh D, Singh J (2016) Use of agrowaste in concrete construction. Int J Environ Ecol Family Urban Stud 6(1):119–130Google Scholar
  10. 10.
    Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Mineral Geochem 74:211–278. doi: 10.2138/rmg.2012.74.6CrossRefGoogle Scholar
  11. 11.
    Nair DG, Fraaij A, Klaassen AAK, Kentgens APM (2008) A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem Concr Res 38(6):861–869. doi: 10.1016/j.cemconres.2007.10.004CrossRefGoogle Scholar
  12. 12.
    Habeeb GA, Fayyadh MM (2009) Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage. Aust J Basic Appl Sci 3(3):1616–1622Google Scholar
  13. 13.
    Jauberthie R, Rendell F, Tamba S, Cisse I (2000) Origin of the pozzolanic effect of rice husks. Constr Build Mater 14:419–423. doi: 10.1016/S0950-0618(00)00045-3CrossRefGoogle Scholar
  14. 14.
    Adesanya DA, Raheem AA (2009) Development of corn cob ash blended cement. Constr Build Mater 23:347–352. doi: 10.1016/j.conbuildmat.2007.11.013CrossRefGoogle Scholar
  15. 15.
    Gupta AI, Wayal AS (2015) Use of rice husk ash in concrete: a review. IOSR J Mech Civ Eng 12(4):29–31Google Scholar
  16. 16.
    Adesanya DA, Raheem AA (2009) A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete. Constr Build Mater 23(1):311–317. doi: 10.1016/j.conbuildmat.2007.12.004CrossRefGoogle Scholar
  17. 17.
    IS456:2000. Plain and reinforced concrete—code of practice. Bureau of Indian Standard 1978 [Reaffirmed 2000], New DelhiGoogle Scholar
  18. 18.
    Otoko GR (2014) Use of bagasse ash as partial replacement of cement in concrete abstract. Int J Innov Res Dev 3(4):285–289Google Scholar
  19. 19.
    Amin N (2011) Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. J Mater Civ Eng ASCE 23(5):717–720. doi: 10.1061/(ASCE)MT.1943-5533.0000227CrossRefGoogle Scholar
  20. 20.
    Srinivasan R, Sathiya K (2010) Experimental study on bagasse ash in concrete. Int J Serv Learn Eng 5(2):60–66. doi: 10.1017/CBO9781107415324.004Google Scholar
  21. 21.
    Givi AN, Rashid SA, Aziz FNA, Salleh MAM (2010) Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Constr Build Mater 24:2145–2150. doi: 10.1016/j.conbuildmat.2010.04.045CrossRefGoogle Scholar
  22. 22.
    Muthadhi A, Kothandaraman S (2013) Experimental investigations of performance characteristics of rice husk ash—blended concrete. J Mater Civ Eng 25:1115–1118. doi: 10.1061/(ASCE)MT.1943-5533.0000656CrossRefGoogle Scholar
  23. 23.
    Ettu LO, Arimanwa JI, Nwachukwu KC, Awodiji CTG, Amanze C (2013) Strength of ternary blended cement concrete containing corn cob ash and pawpaw leaf ash. Int J Eng Sci (IJES) 2(5):84–89Google Scholar
  24. 24.
    Amin N (2011) Use of bagasse ash in cement and its impact on the mechanical behaviour and chloride resistivity of mortar. Adv Cem Res 23(2):75–81. doi: 10.1680/adcr.9.00023CrossRefGoogle Scholar
  25. 25.
    Madandoust R, Mohammad M, Ahmadi H (2011) Mechanical properties and durability assessment of rice husk ash concrete. Biosyst Eng 110:144–152. doi: 10.1016/j.biosystemseng.2011.07.009CrossRefGoogle Scholar
  26. 26.
    Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22:1675–1683. doi: 10.1016/j.conbuildmat.2007.06.011CrossRefGoogle Scholar
  27. 27.
    Ettu LO, Anya UC, Arimanwa JI, Anyaogu L, Nwachukwu KC (2013) Strength of binary blended cement composites containing corn cob ash. Int J Eng Res Dev 6(10):77–82Google Scholar
  28. 28.
    Kim HK, Lee HK (2011) Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr Build Mater 25:1115–1122. doi: 10.1016/j.conbuildmat.2010.06.065CrossRefGoogle Scholar
  29. 29.
    Kou SC, Poon CS (2009) Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr Build Mater 23:2877–2886. doi: 10.1016/j.conbuildmat.2009.02.009CrossRefGoogle Scholar
  30. 30.
    Siddique R, Singh G (2011) Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl 55:885–892. doi: 10.1016/j.resconrec.2011.05.001CrossRefGoogle Scholar
  31. 31.
    Aggarwal Y, Siddique R (2014) Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater 54:210–223. doi: 10.1016/j.conbuildmat.2013.12.051CrossRefGoogle Scholar
  32. 32.
    Al-Jabri KS, Hisada M, Al-Saidy AH, Al-Oraimi SK (2009) Performance of high strength concrete made with copper slag as a fine aggregate. Constr Build Mater 23:2132–2140. doi: 10.1016/j.conbuildmat.2008.12.013CrossRefGoogle Scholar
  33. 33.
    Brindha D, Nagan S (2011) Durability studies on copper slag admixed concrete. Asian J Civ Eng (Build Hous) 12:563–578Google Scholar
  34. 34.
    Singh G, Siddique R (2011) Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete. Constr Build Mater 26:7. doi: 10.1016/j.conbuildmat.2011.06.041Google Scholar
  35. 35.
    Singh M, Siddique R (2015) Properties of concrete containing high volumes of coal bottom ash as fine aggregate. J Clean Prod 91:269–278. doi: 10.1016/j.jclepro.2014.12.026CrossRefGoogle Scholar
  36. 36.
    Yüksel I, Bilir T, Özkan Ö (2007) Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Build Environ 42:2651–2659. doi: 10.1016/j.buildenv.2006.07.003CrossRefGoogle Scholar
  37. 37.
    Wu W, Zhang W, Ma G (2010) Optimum content of copper slag as a fine aggregate in high strength concrete. Mater Des 31:2878–2883. doi: 10.1016/j.matdes.2009.12.037CrossRefGoogle Scholar
  38. 38.
    Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S (2010) Re-usage of waste foundry sand in high-strength concrete. Waste Manag 30:1705–1713. doi: 10.1016/j.wasman.2010.02.018CrossRefGoogle Scholar
  39. 39.
    Ganesh Prabhu G, Hyun JH, Kim YY (2014) Effects of foundry sand as a fine aggregate in concrete production. Constr Build Mater 70:514–521. doi: 10.1016/j.conbuildmat.2014.07.070CrossRefGoogle Scholar
  40. 40.
    Syahrul M, Sani M, Muftah F, Muda Z (2010) The properties of special concrete using washed bottom ash (WBA) as partial sand replacement. Int J Sustain Constr Eng Technol 1:65–76Google Scholar
  41. 41.
    Al-Jabri KS, Al-Saidy AH, Taha R (2011) Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr Build Mater 25:933–938. doi: 10.1016/j.conbuildmat.2010.06.090CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Visvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations