Skip to main content

A Primer for Deterministic Thermodynamics and Cryodynamics

Dedicated to the Founder of Synergetics Hermann Haken

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

The basic laws of deterministic many-body systems are summarized in the footsteps of the deterministic approach pioneered by Yakov Sinai . Two fundamental cases, repulsive and attractive, are distinguished. To facilitate comparison, long-range potentials are assumed both in the repulsive case and in the new attractive case. In Part I, thermodynamics —including the thermodynamics of irreversible processes along with chemical and biological evolution—is presented without paying special attention to the ad hoc constraint of long-range repulsion. In Part II, the recently established new fundamental discipline of cryodynamics, based on long-range attraction, is described in a parallel format. In Part III finally, the combination (“dilute hot-plasma dynamics”) is described as a composite third sister discipline with its still largely unknown properties. The latter include the prediction of a paradoxical “double-temperature equilibrium” or at least quasi-equilibrium existing, which has a promising technological application in the proposed interactive local control of hot-plasma fusion reactors. The discussion section puts everything into a larger perspective which even touches on cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (5) was triggered by a discussion with Tom Kerwick .

  2. 2.

    Fournier is quoted 14 times.

References

  1. O.E. Rossler, The new science of cryodynamics and its connection to cosmology. Complex Systems 20, 105–111 (2011)

    Google Scholar 

  2. L. Boltzmann, Lectures on Gas Theory, Translated by S.G. Brush (University of California Press, Berkeley, 1964)

    Google Scholar 

  3. Y. Sinai, Some remarks on the spectral properties of ergodic dynamical systems. Russ. Math. Surv. 5, 37–50 (1963)

    Article  MATH  Google Scholar 

  4. Y. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25, 137–189 (1970)

    Google Scholar 

  5. A. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function (O sohranenii uslovnoperiodicheskhi dvizhenij pri malom izmenenii funkcii Gamil’tona), Dokl. Akad. Nauk. SSSR 98, 527–530 (1954); V.I. Arnold, Proof of a theorem of A.N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Russian Mathematical Surveys 18:5, 9–36 (1963); J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött. Math. Phys. Kl, 1–20 (1962)

    Google Scholar 

  6. R. Clausius, On several convenient forms of the fundamental equations of the mechanical theory of heat (Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie). Ann. Phys. Chem. 125, 352–400 (1865)

    Google Scholar 

  7. J. Gibbs, Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics (Yale University Press, New Haven, 1902), republished by Dover in 1960

    Google Scholar 

  8. H. Diebner, O.E. Rossler, A deterministic entropy based on the instantaneous phase space volume. Z. Naturforsch. 53a, 51–60 (1998)

    Google Scholar 

  9. K. Sonnleitner, StV4: A symplectic time-reversible Störmer-Verlet algorithm of fourth order for Hamiltonian several-particle systems including two applied examples—gas and T-tube arrangement (StV4: Ein symplektisches zeitreversibles Störmer-Verlet-Verfahren vierter Ordnung für Hamiltonsche Mehrteilchensysteme mit zwei Anwendungsbeispielen (Gas, T-Rohr-Anordnung), (Ph.D. thesis, University of Tübingen 2010)

    Google Scholar 

  10. F. Brando, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 112, 3275–3279 (2015). https://doi.org/10.1073/pnas.1411728112

    Article  Google Scholar 

  11. O.E. Rossler, An estimate of Planck’s constant, in Dynamic Phenomena in Neurochemistry and Neurophysics: Theoretical Aspects (Publications of the Hungarian Academy of Sciences, Budapest, 1985), pp. 16–18

    Google Scholar 

  12. L. Bertalanffy, Theoretical Biology (Theoretische Biologie I) (Gebrüder Bornträger, Berlin, 1932)

    Google Scholar 

  13. I. Prigogine, Dissipative structures in chemical systems, in Fast Reactions and Primary Processes in Chemical Kinetics, ed. by S. Claesson (Interscience, New York, 1967); I. Prigogine, W. Kestemont and M. Marechal, Velocity correlation and irreversibility: a molecular-dynamics approach, in From Chemical to Biological Organization, ed. by M. Markus, S.C. Müller, G. Nicolis (Springer, New York, 1988), pp. 22–26

    Google Scholar 

  14. O.E. Rossler, A system-theoretic model of biogenesis. Z. Naturforsch. 26b, 741–746 (1971)

    Google Scholar 

  15. O.E. Rossler, Deductive prebiology, in Molecular Evolution and Prebiology, ed. by K. Matsuno (Plenum Press, New York 1984), pp. 375–385. https://doi.org/10.1007/978-1-4684-4640-1 27

  16. O.E. Rossler, Is benevolence compatible with intelligence—on the theory of the humane feeling (in German), in The Theme Park of the Expo 2000, vol. 1: Planet of Visions, Knowledge, Information, Communication (Springer, Vienna, 2000), pp. 157–163

    Google Scholar 

  17. P. Teilhard de Chardin, The Future of Man (Harper and Row, New York, 1964)

    Google Scholar 

  18. R. Forward, Dragon’s Egg (Del Rey, New York, 1980)

    Google Scholar 

  19. H. Follmann, C. Brownson, Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96, 1265–1292 (2009). https://doi.org/10.1007/s00114-009-0602-1

    Article  Google Scholar 

  20. E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (Cambridge University Press, 1944)

    Google Scholar 

  21. J. van der Waals, On the Continuity of the Gaseous and Liquid States (in Dutch), Ph.D, thesis, Leiden University, 1873

    Google Scholar 

  22. A. Aranda, J.A. Lopez, C.O. Dorso, V. Furci, Mapping the phase diagram of nuclear matter. Bull. Can.-Am.-Mex. Phys. Soc. (1987)

    Google Scholar 

  23. W. Nernst, Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen (On Calculating Chemical Equilibria from Thermal Measurements), (Nachr. Kgl. Ges. Wiss. Göttingen, 1906), pp. 1–40

    Google Scholar 

  24. H. Kammerlingh-Onnes, Further experiments with liquid Helium, D. On the change of electric resistance of pure metals at very low temperatures, etc., V. The disappearance of the resistance of Mercury, Comm. Phys. Lab. Univ. Leiden, 122b (1911)

    Google Scholar 

  25. P. Kapitza, Viscosity of liquid Helium below the Lambda Point. Nature 141, 74 (1938)

    Article  Google Scholar 

  26. J. Bardeen, Theory of non-Ohmic conduction from charge-density waves in NbSe3. Phys. Rev. Lett. 42, 1498–1500 (1979). https://doi.org/10.1103/PhysRevLett.42.1498

    Article  Google Scholar 

  27. S. Bose, Planck‘s law and light-quantum hypothesis (in German). Zeitschrift für Physik 26, 178–181 (1924). https://doi.org/10.1007/BF01327326

    Article  Google Scholar 

  28. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494–497 (1980). https://doi.org/10.1103/PhysRevLett.45.494

  29. R.B. Laughlin, Anomalous Quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983). https://doi.org/10.1103/PhysRevLett.50.1395

    Article  Google Scholar 

  30. S. Braun, J.P. Ronzheimer, M. Schreiber, S.S. Hodgman, T. Rom, I. Bloch, U. Schneider, Negative absolute temperature for motional degrees of freedom. Science 339, 52–55 (2013). https://doi.org/10.1126/science.1227831

    Article  Google Scholar 

  31. S. Chandrasekhar, Dynamical friction, I. General considerations: the coefficient of dynamical friction, Astrophys. J. 97, 255–262 (1943). https://doi.org/10.1086/144517

  32. P. Schneider, Extragalactic Astronomy and Cosmology (Springer, Heidelberg, 2015), p. 119

    Google Scholar 

  33. O.E. Rossler, F. Kuske and A. Sanayei, Deterministic antidissipation. in Bottom-up Self-Organization in Supramolecular Soft Matter, ed. by S.C. Müller, J. Parisi (Springer, Berlin, 2015), pp. 271–280

    Google Scholar 

  34. CERN 2008, LSAG report, review of the safety of LHC collisions, http://lsag.web.cern.ch/lsag/LSAG-Report.pdf

  35. L.D. Landau, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift Sowjetunion 1, 285–288 (1932)

    Google Scholar 

  36. D. Lynden-Bell, Stellar dynamics: Exact solution of the self-gravitation equation. Mon. Not. R. Astron. Soc. 123, 447–458 (1961). https://doi.org/10.1093/mnras/123.5.447

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 2008), p. 547

    Google Scholar 

  38. M. Hotinceanu, Z. Borsos, O. Dinu, Aspects of thermodynamic equilibrium in plasma. Pet. Gas Univ. Ploiesti Bull. 62, 97–102 (2010)

    Google Scholar 

  39. O.E. Rossler, F. Kuske, A. Sanayei, Cryodynamics can solve the energy problem by stabilizing ITER: a prediction, in Numerical Analysis and Applied Mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics (AIP Publishing, Melville, 2012), pp. 642–645. https://doi.org/10.1063/1.4756216; O.E. Rossler, Hamiltonian chaos: two-temperature equilibrium in hot plasmas predicted, in Fourth International Conference on Complex Systems and Applications ICCSA 2014, pp. 24–27

  40. P. Seeliger, Perspective contributions of atomic and nuclear processes to a carbon-free energy economy of the future (in German). Sitzungsberichte der Leibniz-Sozietät der Wissenschaften zu Berlin 130, 165–187 (2017), cf. p. 171

    Google Scholar 

  41. O.E. Rossler, A. Sanayei, Is hot fusion made feasible by the discovery of cryodynamics? in Nostradamus: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems (Springer, Berlin, 2013), pp. 1–4

    Google Scholar 

  42. C.S. Adams, H.J. Lee, N. Davidson, M. Kasevich, S. Chu, Evaporative cooling in a crossed dipole trap. Phys. Rev. Lett. 74, 3577–3580 (1995). https://doi.org/10.1103/PhysRevLett.74.3577

    Article  Google Scholar 

  43. T. McGuire, The lockheed Martin compact fusion reactor. Thursday Colloquium, Princeton University, August 6, 2015

    Google Scholar 

  44. G. Farmelo, The Strangest Man—The Hidden Life of Paul Dirac, Quantum Genius (Faber and Faber, London, 2009)

    MATH  Google Scholar 

  45. J.J. Waterston, On the physics of media that are composed of free and perfectly elastic molecules in a state of motion (1845). Philos. T. R. Soc. Lond. A 183, 1–79 (1892), (edited after 47 years by Lord Rayleigh). https://doi.org/10.1098/rsta.1892.0001

  46. J. van Helmont, Oriatrike or Physick Refined (Lodowick Loyd, London, 1662)

    Google Scholar 

  47. H. Diebner, Time-dependent deterministic entropies and dissipative structures in exactly reversible Newtonian molecular-dynamics universes (in German) (Grauer-Verlag, Stuttgert 1999). Ph.D. Thesis, University of Tübingen

    Google Scholar 

  48. R. Descartes, Principles of Philosophy (Latin original 1644) (Kluwer, Dordrecht, 1991)

    Google Scholar 

  49. H. Poincare, On the three-body problem and the equations of dynamics (in French). Acta Math. 13, 1–270 (1890), cf. J. Barrow-Green, Poincaré and the Three-Body Problem, Vol. 2 (American Mathematical Society. Providence, R.I., 1997)

    Google Scholar 

  50. R. Movassagh, A time-asymmetric process in central force scatterings (2013), arXiv:1008.0875[physics.class-ph]

  51. O.E. Rossler, R. Movassagh, Bitemporal Sinai divergence: an energetic analog to Boltzmann’s entropy? Int. J. Nonlin. Sci. Num. 6, 349–350 (2005)

    Article  Google Scholar 

  52. E. Fournier d’Albe, Two new Worlds (I) The Infra-World, (II) The Supra World (World and Longman Green, Longmans, Green and Co., London 1907)

    Google Scholar 

  53. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)

    Google Scholar 

  54. P.H. Coleman, L. Pietronero, The fractal nature of the universe. Phys. A 185, 45–55 (1992). https://doi.org/10.1016/0378-4371(92)90436-T

    Article  Google Scholar 

  55. V.C. Rubin, N. Thonnard, W.K. Ford, Jr., Extended rotation curves of high-luminosity spiral galaxies, IV: Systematic dynamical properties SA through SC. Astrophys. J. 225, L 101–111 (1978). https://doi.org/10.1086/182804

  56. R. Giacconi, et al., The Chandra Deep field south one million seconds catalog. Astrophys. J. Suppl. 139, 369–410 (2002)

    Google Scholar 

  57. F. Zwicky, On the red shift of spectral lines through interstellar space. Proc. Natl. Acad. Sci. USA 15, 773–779 (1929)

    Article  MATH  Google Scholar 

  58. O.E. Rossler, The c-global revival in physics. Prog. Phys. 11, 340–343 (2015)

    Google Scholar 

  59. S. Mason, A History of the Sciences (Collier-MacMillan, New York, 1968)

    Google Scholar 

  60. S. Sambursky, Physical World of Late Antiquity (Basic Books, New York, 1962)

    Google Scholar 

  61. A. Assis, M. Newes, History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron 2, 79–84 (1995)

    Google Scholar 

  62. M. Scheler, Man’s Place in Nature (Noonday, New York, 1961)

    Google Scholar 

  63. A. Sanayei, O. Rossler, Chaotic Harmony—A Dialog about Physics, Complexity and Life (Springer, Heidelberg, 2014)

    MATH  Google Scholar 

  64. O.E. Rossler, Rolling ball in breathing plane-tree alley paradigm. Eur. Sci. J. 9, 1–7 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank Yakov Sinai for his long-standing encouragement, and Ali Sanayei, Stefan C. Müller, Valerie Messager, Ralph Abraham, John Kozak, Daniel Stein, Jim Yorke, M.A. Aziz-Alaoui, Cyrille Bertelle, Werner Ebeling, Peter Plath, Boris Schapiro, Ramis Movassagh, Kenzei Hiwaki, George Lasker, Greg Andonian, Peter Weibel, Eric Klien, Andre Assis, Saurya Das, Günter Häfelinger, Alfred Rieckers, Wolfgang Müller-Schauenburg, Henry Gebhardt, Tobias Winkler, Niels Birbaumer, Walter Ratjen, Günter Radons, Luc Pastur, Dogwon Kim, Jürgen Parisi, Bill Seaman, Joachim Peinke, Rudolf Huebener, Stephen Wolfram, Leon Chua, Niels Schopohl and Matthias Bartelmann for discussions. For J.O.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto E. Rossler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossler, O.E. et al. (2018). A Primer for Deterministic Thermodynamics and Cryodynamics. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics