Skip to main content

Dynamical Systems with Time-Varying Delay: Dissipative and More Dissipative Systems

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

We investigate the dynamical properties of time-delay systems with time-varying delay, where we focus on the influence of the functional structure of the delay. Two universality classes of systems with time-varying delays are presented which lead to fundamental differences in the dynamics of the related systems, as for example the scaling behavior of the Lyapunov spectrum. The classification is connected to the well-known existence or non-existence of topological conjugacies of circle maps to constant rotations. It is independent of the specific delay system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Just, A. Pelster, M. Schanz, E. Schöll, Delayed complex systems: an overview. Phil. Trans. R. Soc. A 368, 303–304 (2010)

    Article  MATH  Google Scholar 

  2. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

    MATH  Google Scholar 

  4. M. Ghil, I. Zaliapin, S. Thompson, A delay differential model of ENSO variability: parametric instability and the distribution of extremes. Nonlinear Processes Geophys. 15, 417–433 (2008)

    Article  Google Scholar 

  5. E. Tziperman, L. Stone, M.A. Cane, H. Jarosh, El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264, 72–74 (1994)

    Article  Google Scholar 

  6. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic, Dordrecht, 1992)

    Book  MATH  Google Scholar 

  7. Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics (Academic Press, San Diego CA, 1993)

    MATH  Google Scholar 

  8. H.L. Smith, Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. Math. Biosci. 113, 1–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. H.L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, vol. 57 (Springer, New York, 2010)

    Google Scholar 

  10. F.M. Atay, J. Jost, A. Wende, Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92, 144101 (2004)

    Article  Google Scholar 

  11. M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  12. T. Insperger, G. Stépán, Semi-Discretization for Time-Delay Systems: stability and Engineering Applications (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  13. Y.N. Kyrychko, S.J. Hogan, On the use of delay equations in engineering applications. J. Vibr. Control 16, 943–960 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Jüngling, A. Gjurchinovski, V. Urumov, Experimental time-delayed feedback control with variable and distributed delays. Phys. Rev. E 86, 046213 (2012)

    Article  Google Scholar 

  15. Y. Sugitani, K. Konishi, N. Hara, Experimental verification of amplitude death induced by a periodic time-varying delay-connection. Nonlinear Dyn. 70, 2227–2235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Kloosterman, S. Campbell, F. Poulin, An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton. SIAM J. Appl. Math. 76, 551–577 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Ambika, R.E. Amritkar, Anticipatory synchronization with variable time delay and reset. Phys. Rev. E 79, 056206 (2009)

    Article  MathSciNet  Google Scholar 

  18. W.H. Kye, M. Choi, M.S. Kurdoglyan, C.M. Kim, Y.J. Park, Synchronization of chaotic oscillators due to common delay time modulation. Phys. Rev. E 70, 046211 (2004)

    Article  Google Scholar 

  19. A. Otto, G. Radons, Application of spindle speed variation for chatter suppression in turning. CIRP J. Manuf. Sci. Technol. 6, 102–109 (2013)

    Article  Google Scholar 

  20. M. Zatarain, I. Bediaga, J. Muñoa, R. Lizarralde, Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann. Manuf. Technol. 57, 379–384 (2008)

    Article  Google Scholar 

  21. F. Zhang, M. Yeddanapudi, Modeling and simulation of time-varying delays, in Proceedings of TMS/DEVS, San Diego CA, (2012) pp 34:1–34:8

    Google Scholar 

  22. D. Bresch-Pietri, N. Petit, Implicit integral equations for modeling systems with a transport delay. In: (Eds.), E. Witrant, E. Fridman, O. Sename, L. Dugard, Recent results on time-delay systems, no. 5 in Advances in delays and dynamics, (Springer International Publishing, Cham, 2016), pp 3–21

    Google Scholar 

  23. D. Bresch-Pietri, J. Chauvin, N. Petit, Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type. IEEE Trans. Autom. Control 59, 2385–2399 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Insperger, G. Stépán, Stability analysis of turning with periodic spindle speed modulation via semidiscretization. J. Vib. Control 10, 1835–1855 (2004)

    MATH  Google Scholar 

  25. R. Bellman, K.L. Cooke, On the computational solution of a class of functional differential equations. J. Math. Anal. Appl. 12, 495–500 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  26. J.P. Seddon, R.A. Johnson, The simulation of variable delay. IEEE Trans. Comput. 1, 89–94 (1968)

    Article  Google Scholar 

  27. T.C. Tsao, M.W. McCarthy, S.G. Kapoor, A new approach to stability analysis of variable speed machining systems. Int. J. Mach. Tools Manuf. 33, 791–808 (1993)

    Article  Google Scholar 

  28. E.I. Verriest, Inconsistencies in systems with time-varying delays and their resolution. IMA J. Math. Control Inf. 28, 147–162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Otto, G. Radons, The influence of tangential and torsional vibrations on the stability lobes in metal cutting. Nonlinear Dyn. 82, 1989–2000 (2015)

    Article  Google Scholar 

  30. D. Müller, A. Otto, G. Radons, From dynamical systems with time-varying delay to circle maps and Koopman operators. Phys. Rev. E 95, 062214 (2017)

    Article  Google Scholar 

  31. A. Otto, D. Müller, G. Radons, Universal dichotomy for dynamical systems with variable delay. Phys. Rev. Lett. 118, 044104 (2017)

    Article  Google Scholar 

  32. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  33. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  34. A.Y. Khinchin, Continued Fractions (Dover Publications, Mineola, 1997)

    MATH  Google Scholar 

  35. M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Inst. Hautes Études Sci. Publ. Math. 49, 5–233 (1979)

    Article  MATH  Google Scholar 

  36. V.I. Arnold, Collected Works (Springer, Berlin, 2009)

    Book  Google Scholar 

  37. J. Farmer, Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 366–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Insperger, G. Stépán, Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Method Eng. 61, 117–141 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Radons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, D., Otto, A., Radons, G. (2018). Dynamical Systems with Time-Varying Delay: Dissipative and More Dissipative Systems. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics