Abstract
Humans (with their brains, bodies and behaviors) are complex dynamical systems embedded in an environment that includes a multitude of other conspecifics. Moving beyond previous brain- centered views of the human mind requires to develop a parsimonious yet integrative account that relates neural, behavioral, and social scales. Social neuroscience has recently started to acknowledge the importance of relational dynamics when it extended its purview from social stimuli to human-human interactions. Human-machine interaction s also constitute promising tools to probe multiple scales in a controlled manner. Inspired by the electrophysiological method of the dynamic clamp, Virtual Partner Interaction (VPI) allows real time interaction between human subjects and their simulations as dynamical system. This provides a new test bed for operationalizing theoretical models in experimental settings. We discuss how VPI can be generalized into a Human Dynamic Clamp (HDC) , a paradigm that allows the exploration of the parameter spaces of interactional dynamics in various contexts: from rhythmic and discrete coordination to adaptive and intentional behaviors, including learning. HDC brings humans and machines together to question our understanding of the natural and our theory behind the artificial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J.A.S. Kelso, G. Dumas, E. Tognoli, Outline of a general theory of behavior and brain coordination. Neural Netw. Off. J. Int. Neural Netw. Soc. 37, 120–131 (2013). https://doi.org/10.1016/j.neunet.2012.09.003
J.A.S. Kelso, Coordination dynamics, in Encyclopedia of Complexity and Systems Science, ed. by R.M. Meyers (Springer, New York, 2009), pp. 1537–1565
J.A.S. Kelso, Dynamic Patterns: The Self-Organization of Brain and Behavior (The MIT Press, Cambridge, 1995)
J.A.S. Kelso, J.J. Jeka, Symmetry breaking dynamics of human multilimb coordination. J. Exp. Psychol. Hum. Percept. Perform. 18, 645 (1992)
G. Dumas, G.C. de Guzman, E. Tognoli, J.A.S. Kelso, The human dynamic clamp as a paradigm for social interaction. Proc. Natl. Acad. Sci. U.S.A. 111, E3726–E3734 (2014). https://doi.org/10.1073/pnas.1407486111
J.A.S. Kelso, G.C. de Guzman, C. Reveley, E. Tognoli, Virtual partner interaction (VPI): exploring novel behaviors via coordination dynamics. PLoS ONE 4, e5749 (2009). https://doi.org/10.1371/journal.pone.0005749.t002
S.L. Bressler, E. Tognoli, Operational principles of neurocognitive networks. Int. J. Psychophysiol. 60, 139–148 (2006). https://doi.org/10.1016/j.ijpsycho.2005.12.008
O. Oullier, G.C. de Guzman, K.J. Jantzen, J.A.S. Kelso, On context dependence of behavioral variability in inter-personal coordination. Int. J. Comput. Sci. Sport 2, 126–128 (2003)
G. Dumas, J. Nadel, R. Soussignan et al., Inter-brain synchronization during social interaction. PLoS ONE 5, e12166 (2010). https://doi.org/10.1371/journal.pone.0012166
V. Müller, J. Sänger, U. Lindenberger, Intra- and inter-brain synchronization during musical improvisation on the guitar. PLoS ONE 8, e73852 (2013). https://doi.org/10.1371/journal.pone.0073852.s012
E. Tognoli, J. Lagarde, G.C. de Guzman, J.A.S. Kelso, The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. U.S.A. 104, 8190–8195 (2007)
G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Sci. NY 304, 1926–1929 (2004). https://doi.org/10.1126/science.1099745
E. Tognoli, J.A.S. Kelso, The metastable brain. Neuron 81, 35–48 (2014). https://doi.org/10.1016/j.neuron.2013.12.022
H.R. Maturana, F.J. Varela, The Tree of Knowledge: The Biological Roots of Human Understanding (New Science Library/Shambhala Publications, 1987)
H. Haken, Advanced Synergetics (Springer, Berlin, Heidelberg, 1983)
A. Fuchs, Nonlinear Dynamics in Complex Systems (Springer, Berlin, Heidelberg, 2013)
G. Schöner, A dynamic theory of coordination of discrete movement. Biol. Cybern. 63(4), 257–270 (1990)
F. Babiloni, L. Astolfi, Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 1–18 (2012). https://doi.org/10.1016/j.neubiorev.2012.07.006
G. Dumas, F. Lachat, J. Martinerie et al., From social behaviour to brain synchronization: review and perspectives in hyperscanning. Irbm 32, 48–53 (2011)
U. Hasson, A.A. Ghazanfar, B. Galantucci et al., Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012). https://doi.org/10.1016/j.tics.2011.12.007
I. Konvalinka, A. Roepstorff, The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci. 6, 215 (2012)
P.R. Montague, G.S. Berns, J.D. Cohen et al., Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16, 1159–1164 (2002). https://doi.org/10.1006/nimg.2002.1150
G. Dumas, Towards a two-body neuroscience. Commun. Integr. Biol. 4, 349–352 (2011). https://doi.org/10.4161/cib.4.3.15110
R. Hari, L. Henriksson, S. Malinen, L. Parkkonen, Centrality of social interaction in human brain function. Neuron 88, 181–193 (2015). https://doi.org/10.1016/j.neuron.2015.09.022
R. Hari, M.V. Kujala, Brain basis of human social interaction: from concepts to brain imaging. Physiol. Rev. 89, 453–479 (2009). https://doi.org/10.1152/physrev.00041.2007
L. Schilbach, B. Timmermans, V. Reddy et al., Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414 (2013). https://doi.org/10.1017/S0140525X12000660
J. Mattout. Brain-computer interfaces: a neuroscience paradigm of social interaction? A matter of perspective. Front. Hum. Neurosci. (2012). https://doi.org/10.3389/fnhum.2012.00114
U.J. Pfeiffer, B. Timmermans, G. Bente et al., A non-verbal Turing test: differentiating mind from machine in gaze-based social interaction. PLoS ONE 6, e27591 (2011). https://doi.org/10.1371/journal.pone.0027591
J. Scholtz, Theory and evaluation of human robot interactions, in Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003 (IEEE, 2003), p 10
M. Ochs, C. Pelachaud, D. Sadek, An empathic virtual dialog agent to improve human-machine interaction, in Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (Estoril, Portugal, 2008)
M. Zhang, G. Dumas, J.A.S. Kelso, E. Tognoli, Enhanced emotional responses during social coordination with a virtual partner. Int. J. Psychophysiol. 104, 33–43 (2016). https://doi.org/10.1016/j.ijpsycho.2016.04.001
L. Schilbach, A.M. Wohlschlaeger, N.C. Kraemer et al., Being with virtual others: neural correlates of social interaction. Neuropsychologia 44, 718–730 (2006). https://doi.org/10.1016/j.neuropsychologia.2005.07.017
J.M. Loomis, J.J. Blascovich, A.C. Beall, Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999)
C. McCall, J. Blascovich, How, when, and why to use digital experimental virtual environments to study social behavior. Soc. Personal Psychol. Compass 3, 744–758 (2009)
M.V. Sanchez-Vives, M. Slater, From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005). https://doi.org/10.1038/nrn1651
F. Biocca, C. Harms, J.K. Burgoon, Toward a more robust theory and measure of social presence: review and suggested criteria. Presence 12, 456–480 (2003)
M. Garau, M. Slater, D.-P. Pertaub, S. Razzaque, The responses of people to virtual humans in an immersive virtual environment. Presence Teleoper. Virtual Environ. 14, 104–116 (2005)
B.H. Repp, P.E. Keller, Sensorimotor synchronization with adaptively timed sequences. Hum. Mov. Sci. 27, 423–456 (2008)
M.T. Fairhurst, P. Janata, P.E. Keller, Being and feeling in sync with an adaptive virtual partner: Brain mechanisms underlying dynamic cooperativity. Cereb. Cortex 23, 2592–2600 (2013). https://doi.org/10.1093/cercor/bhs243
V. Kostrubiec, G. Dumas, P.-G. Zanone, J.A.S. Kelso, The virtual teacher (VT) paradigm: Learning new patterns of interpersonal coordination using the human dynamic clamp. PLoS ONE 10, e0142029 (2015)
J.A.S. Kelso, Phase transitions: foundations of behavior, in Synergetics of Cognition, ed. by H. Haken, M. Stadler (Springer, Berlin, 1990), pp. 249–268
J.A.S. Kelso, G. Schöner, J.P. Scholz, H. Haken, Phase-locked modes, phase transitions and component oscillators in biological motion. Phys. Scr. 35, 1–9 (1987)
M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Springer Science and Business Media, 2003)
K.G. Wilson, Problems in physics with many scales of length. Sci. Am. 241, 158–179 (1979)
A.A. Prinz, L.F. Abbott, E. Marder, The dynamic clamp comes of age. Trends Neurosci. 27, 218–224 (2004). https://doi.org/10.1016/j.tins.2004.02.004
S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 2008)
H. Haken, J.A.S. Kelso, H. Bunz, A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985)
O. Oullier, G.C. de Guzman, K.J. Jantzen et al., Social coordination dynamics: measuring human bonding. Soc. Neurosci. 3, 178–192 (2008)
J. Lagarde, C. Peham, T. Licka, J.A.S. Kelso, Coordination dynamics of the horse-rider system. J. Mot. Behav. 37, 418–424 (2005)
J. Lagarde, J.A.S. Kelso, Binding of movement, sound and touch: multimodal coordination dynamics. Exp. Brain Res. 173, 673–688 (2006)
J.A.S. Kelso, S.L. Bressler, S. Buchanan et al., A phase transition in human brain and behavior. Phys. Lett. A 169, 134–144 (1992). https://doi.org/10.1016/0375-9601(92)90583-8
J.A.S. Kelso, A. Fuchs, R. Lancaster et al., Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392, 814–817 (1998)
S.L. Bressler, J.A.S. Kelso, Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001)
K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. J. Cogn. Neurosci. 21, 2420–2433 (2009)
E. Tognoli, J.A.S. Kelso, Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog. Neurobiol. 87, 31–40 (2009). https://doi.org/10.1016/j.pneurobio.2008.09.014
J.A.S. Kelso, J. DelColle, G. Schöner, Action perception as a pattern formation process, in Attention and Performance XIII, ed. by M. Jeannerod (Erlbaum, Hills-dale, NJ, 1990), pp. 139–169
K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Brain networks underlying human timing behavior are influenced by prior context. Proc. Natl. Acad. Sci. U.S.A. 101, 6815–6820 (2004). https://doi.org/10.1073/pnas.0401300101
O. Oullier, K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Neural substrates of real and imagined sensorimotor coordination. Cereb. Cortex 15, 975–985 (2004). https://doi.org/10.1093/cercor/bhh198
A. Fuchs, J.A.S. Kelso, Movement coordination, in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 5718–5736
R. Huys, D. Perdikis, V.K. Jirsa, Functional architectures and structured flows on manifolds: a dynamical framework for perceptual-motor behavior. Psychol. Rev. 121, 1–113 (2013). https://doi.org/10.1037/a0037014
F. Danion, Do we need internal models for movement control? Nonlinear Dyn. Hum. Behav. 328, 115–134 (2011). https://doi.org/10.1007/978-3-642-16262-6_5
S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybern. 103, 319–338 (2010)
R. Huys, B.E. Studenka, N.L. Rheaume et al., Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput. Biol. 4, e1000061 (2008). https://doi.org/10.1371/journal.pcbi.1000061.g004
R. Huys, V.K. Jirsa, Nonlinear Dynamics in Human Behavior (Springer, Heidelberg, 2010)
J.A.S. Kelso, K.G. Holt, P.N. Kugler, M.T. Turvey, On the concept of coordinative structures as dissipative structures: II. Empirical lines of convergence. Adv Psychol. 1, 49–70 (1980)
P.N. Kugler, J.A.S. Kelso, M.T. Turvey, On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Tutor. Mot. Behav. 3, 47 (1980)
D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19(4), 627–664 (2000)
V.K. Jirsa, J.A.S. Kelso, The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J. Mot. Behav. 37, 35–51 (2005)
P.W. Fink, J.A.S. Kelso, V.K. Jirsa, Perturbation-induced false starts as a test of the Jirsa-Kelso Excitator model. J. Mot. Behav. 41, 147–157 (2009)
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)
R. Rosen, Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life (Columbia University Press, New York, 1991)
J. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992)
M. Kinsbourne, J.S. Jordan, Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 46, 103–126 (2009)
T.L. Chartrand, J.A. Bargh, The chameleon effect: the perception–behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893 (1999)
A. Fogel, Two principles of communication: co-regulation and framing. New Perspect. Early Commun. Dev. 9–22 (1993)
D.A. Engstrøm, J.A.S. Kelso, T. Holroyd, Reaction-anticipation transitions in human perception-action patterns. Hum. Mov. Sci. 15, 809–832 (1996)
J. Peters, S. Schaal, Policy gradient methods for robotics, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 2219–2225
Friston KJ (2010) The free-energy principle: a unified brain theory? 11:127–138. https://doi.org/10.1038/nrn2787
T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)
I. Harvey, E. Di Paolo, R. Wood et al., Evolutionary robotics: a new scientific tool for studying cognition. Artif. Life 11, 79–98 (2005)
B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1999)
E.W. Large, M.R. Jones, The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119 (1999)
I. Konvalinka, P. Vuust, A. Roepstorff, A coupled oscillator model of interactive tapping, in Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (Jyvaskyla, Finland, 2009)
E.L. Saltzman, K.G. Munhall, Skill acquisition and development: The roles of state-, parameter-, and graph-dynamics. J. Mot. Behav. 24, 49–57 (1992)
L. Righetti, J. Buchli, A.J. Ijspeert, Adaptive frequency oscillators and applications. Open Cybern. Syst. J. 3, 64–69 (2009)
L. Righetti, J. Buchli, A.J. Ijspeert, Dynamic Hebbian learning in adaptive frequency oscillators. Phys. Nonlinear Phenom. 216, 269–281 (2006). https://doi.org/10.1016/j.physd.2006.02.009
A.A. Sharp, M.B. O’Neil, L.F. Abbott, E. Marder, The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16, 389–394 (1993)
W.J. Freeman, Consciousness, intentionality and causality. J. Conscious. Stud. 6, 143–172 (1999)
J.-J. Aucouturier, T. Ikegami, The illusion of agency: two engineering approaches to compromise autonomy and reactivity in an artificial system. Adapt. Behav. 17, 402–420 (2009). https://doi.org/10.1177/1059712309344420
X.E. Barandiaran, E. Di Paolo, M. Rohde, Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 17, 367–386 (2009)
J.A.S. Kelso, J.P. Scholz, G. Schöner, Dynamics governs switching among patterns of coordination in biological movement. Phys. Lett. A 134, 8–12 (1988)
C. De Luca, K.J. Jantzen, S. Comani et al., Striatal activity during intentional switching depends on pattern stability. J. Neurosci. 30, 3167–3174 (2010). https://doi.org/10.1523/JNEUROSCI.2673-09.2010
E. Tognoli, G. Dumas, J.A.S. Kelso, A roadmap to computational social neuroscience, in Advances in Cognitive Neurodynamics (V) (Springer, Dordrecht, in press)
G. Schöner, J.A.S. Kelso, A dynamic pattern theory of behavioral change. Science 135, 1513–1520 (1988). https://doi.org/10.1126/science.3281253
Acknowledgements
The research described herein was supported by grants from the National Institute of Mental Health (MH080838), the Davimos Family Endowment for Excellence in Science and The FAU Foundation (Eminent Scholar in Science).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Dumas, G., Lefebvre, A., Zhang, M., Tognoli, E., Scott Kelso, J.A. (2018). The Human Dynamic Clamp: A Probe for Coordination Across Neural, Behavioral, and Social Scales. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-64334-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64333-5
Online ISBN: 978-3-319-64334-2
eBook Packages: EngineeringEngineering (R0)