Skip to main content

The Human Dynamic Clamp: A Probe for Coordination Across Neural, Behavioral, and Social Scales

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

Humans (with their brains, bodies and behaviors) are complex dynamical systems embedded in an environment that includes a multitude of other conspecifics. Moving beyond previous brain- centered views of the human mind requires to develop a parsimonious yet integrative account that relates neural, behavioral, and social scales. Social neuroscience has recently started to acknowledge the importance of relational dynamics when it extended its purview from social stimuli to human-human interactions. Human-machine interaction s also constitute promising tools to probe multiple scales in a controlled manner. Inspired by the electrophysiological method of the dynamic clamp, Virtual Partner Interaction (VPI) allows real time interaction between human subjects and their simulations as dynamical system. This provides a new test bed for operationalizing theoretical models in experimental settings. We discuss how VPI can be generalized into a Human Dynamic Clamp (HDC) , a paradigm that allows the exploration of the parameter spaces of interactional dynamics in various contexts: from rhythmic and discrete coordination to adaptive and intentional behaviors, including learning. HDC brings humans and machines together to question our understanding of the natural and our theory behind the artificial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A.S. Kelso, G. Dumas, E. Tognoli, Outline of a general theory of behavior and brain coordination. Neural Netw. Off. J. Int. Neural Netw. Soc. 37, 120–131 (2013). https://doi.org/10.1016/j.neunet.2012.09.003

    Article  Google Scholar 

  2. J.A.S. Kelso, Coordination dynamics, in Encyclopedia of Complexity and Systems Science, ed. by R.M. Meyers (Springer, New York, 2009), pp. 1537–1565

    Chapter  Google Scholar 

  3. J.A.S. Kelso, Dynamic Patterns: The Self-Organization of Brain and Behavior (The MIT Press, Cambridge, 1995)

    Google Scholar 

  4. J.A.S. Kelso, J.J. Jeka, Symmetry breaking dynamics of human multilimb coordination. J. Exp. Psychol. Hum. Percept. Perform. 18, 645 (1992)

    Article  Google Scholar 

  5. G. Dumas, G.C. de Guzman, E. Tognoli, J.A.S. Kelso, The human dynamic clamp as a paradigm for social interaction. Proc. Natl. Acad. Sci. U.S.A. 111, E3726–E3734 (2014). https://doi.org/10.1073/pnas.1407486111

    Article  Google Scholar 

  6. J.A.S. Kelso, G.C. de Guzman, C. Reveley, E. Tognoli, Virtual partner interaction (VPI): exploring novel behaviors via coordination dynamics. PLoS ONE 4, e5749 (2009). https://doi.org/10.1371/journal.pone.0005749.t002

    Article  Google Scholar 

  7. S.L. Bressler, E. Tognoli, Operational principles of neurocognitive networks. Int. J. Psychophysiol. 60, 139–148 (2006). https://doi.org/10.1016/j.ijpsycho.2005.12.008

    Article  Google Scholar 

  8. O. Oullier, G.C. de Guzman, K.J. Jantzen, J.A.S. Kelso, On context dependence of behavioral variability in inter-personal coordination. Int. J. Comput. Sci. Sport 2, 126–128 (2003)

    Google Scholar 

  9. G. Dumas, J. Nadel, R. Soussignan et al., Inter-brain synchronization during social interaction. PLoS ONE 5, e12166 (2010). https://doi.org/10.1371/journal.pone.0012166

    Article  Google Scholar 

  10. V. Müller, J. Sänger, U. Lindenberger, Intra- and inter-brain synchronization during musical improvisation on the guitar. PLoS ONE 8, e73852 (2013). https://doi.org/10.1371/journal.pone.0073852.s012

    Article  Google Scholar 

  11. E. Tognoli, J. Lagarde, G.C. de Guzman, J.A.S. Kelso, The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. U.S.A. 104, 8190–8195 (2007)

    Article  Google Scholar 

  12. G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Sci. NY 304, 1926–1929 (2004). https://doi.org/10.1126/science.1099745

    Article  Google Scholar 

  13. E. Tognoli, J.A.S. Kelso, The metastable brain. Neuron 81, 35–48 (2014). https://doi.org/10.1016/j.neuron.2013.12.022

    Article  Google Scholar 

  14. H.R. Maturana, F.J. Varela, The Tree of Knowledge: The Biological Roots of Human Understanding (New Science Library/Shambhala Publications, 1987)

    Google Scholar 

  15. H. Haken, Advanced Synergetics (Springer, Berlin, Heidelberg, 1983)

    MATH  Google Scholar 

  16. A. Fuchs, Nonlinear Dynamics in Complex Systems (Springer, Berlin, Heidelberg, 2013)

    Book  MATH  Google Scholar 

  17. G. Schöner, A dynamic theory of coordination of discrete movement. Biol. Cybern. 63(4), 257–270 (1990)

    Google Scholar 

  18. F. Babiloni, L. Astolfi, Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 1–18 (2012). https://doi.org/10.1016/j.neubiorev.2012.07.006

    Google Scholar 

  19. G. Dumas, F. Lachat, J. Martinerie et al., From social behaviour to brain synchronization: review and perspectives in hyperscanning. Irbm 32, 48–53 (2011)

    Article  Google Scholar 

  20. U. Hasson, A.A. Ghazanfar, B. Galantucci et al., Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012). https://doi.org/10.1016/j.tics.2011.12.007

    Article  Google Scholar 

  21. I. Konvalinka, A. Roepstorff, The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci. 6, 215 (2012)

    Article  Google Scholar 

  22. P.R. Montague, G.S. Berns, J.D. Cohen et al., Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16, 1159–1164 (2002). https://doi.org/10.1006/nimg.2002.1150

    Article  Google Scholar 

  23. G. Dumas, Towards a two-body neuroscience. Commun. Integr. Biol. 4, 349–352 (2011). https://doi.org/10.4161/cib.4.3.15110

    Article  Google Scholar 

  24. R. Hari, L. Henriksson, S. Malinen, L. Parkkonen, Centrality of social interaction in human brain function. Neuron 88, 181–193 (2015). https://doi.org/10.1016/j.neuron.2015.09.022

    Article  Google Scholar 

  25. R. Hari, M.V. Kujala, Brain basis of human social interaction: from concepts to brain imaging. Physiol. Rev. 89, 453–479 (2009). https://doi.org/10.1152/physrev.00041.2007

    Article  Google Scholar 

  26. L. Schilbach, B. Timmermans, V. Reddy et al., Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414 (2013). https://doi.org/10.1017/S0140525X12000660

    Article  Google Scholar 

  27. J. Mattout. Brain-computer interfaces: a neuroscience paradigm of social interaction? A matter of perspective. Front. Hum. Neurosci. (2012). https://doi.org/10.3389/fnhum.2012.00114

  28. U.J. Pfeiffer, B. Timmermans, G. Bente et al., A non-verbal Turing test: differentiating mind from machine in gaze-based social interaction. PLoS ONE 6, e27591 (2011). https://doi.org/10.1371/journal.pone.0027591

    Article  Google Scholar 

  29. J. Scholtz, Theory and evaluation of human robot interactions, in Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003 (IEEE, 2003), p 10

    Google Scholar 

  30. M. Ochs, C. Pelachaud, D. Sadek, An empathic virtual dialog agent to improve human-machine interaction, in Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (Estoril, Portugal, 2008)

    Google Scholar 

  31. M. Zhang, G. Dumas, J.A.S. Kelso, E. Tognoli, Enhanced emotional responses during social coordination with a virtual partner. Int. J. Psychophysiol. 104, 33–43 (2016). https://doi.org/10.1016/j.ijpsycho.2016.04.001

    Article  Google Scholar 

  32. L. Schilbach, A.M. Wohlschlaeger, N.C. Kraemer et al., Being with virtual others: neural correlates of social interaction. Neuropsychologia 44, 718–730 (2006). https://doi.org/10.1016/j.neuropsychologia.2005.07.017

    Article  Google Scholar 

  33. J.M. Loomis, J.J. Blascovich, A.C. Beall, Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31, 557–564 (1999)

    Article  Google Scholar 

  34. C. McCall, J. Blascovich, How, when, and why to use digital experimental virtual environments to study social behavior. Soc. Personal Psychol. Compass 3, 744–758 (2009)

    Article  Google Scholar 

  35. M.V. Sanchez-Vives, M. Slater, From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005). https://doi.org/10.1038/nrn1651

    Article  Google Scholar 

  36. F. Biocca, C. Harms, J.K. Burgoon, Toward a more robust theory and measure of social presence: review and suggested criteria. Presence 12, 456–480 (2003)

    Article  Google Scholar 

  37. M. Garau, M. Slater, D.-P. Pertaub, S. Razzaque, The responses of people to virtual humans in an immersive virtual environment. Presence Teleoper. Virtual Environ. 14, 104–116 (2005)

    Article  Google Scholar 

  38. B.H. Repp, P.E. Keller, Sensorimotor synchronization with adaptively timed sequences. Hum. Mov. Sci. 27, 423–456 (2008)

    Article  Google Scholar 

  39. M.T. Fairhurst, P. Janata, P.E. Keller, Being and feeling in sync with an adaptive virtual partner: Brain mechanisms underlying dynamic cooperativity. Cereb. Cortex 23, 2592–2600 (2013). https://doi.org/10.1093/cercor/bhs243

    Article  Google Scholar 

  40. V. Kostrubiec, G. Dumas, P.-G. Zanone, J.A.S. Kelso, The virtual teacher (VT) paradigm: Learning new patterns of interpersonal coordination using the human dynamic clamp. PLoS ONE 10, e0142029 (2015)

    Article  Google Scholar 

  41. J.A.S. Kelso, Phase transitions: foundations of behavior, in Synergetics of Cognition, ed. by H. Haken, M. Stadler (Springer, Berlin, 1990), pp. 249–268

    Google Scholar 

  42. J.A.S. Kelso, G. Schöner, J.P. Scholz, H. Haken, Phase-locked modes, phase transitions and component oscillators in biological motion. Phys. Scr. 35, 1–9 (1987)

    Article  Google Scholar 

  43. M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Springer Science and Business Media, 2003)

    Google Scholar 

  44. K.G. Wilson, Problems in physics with many scales of length. Sci. Am. 241, 158–179 (1979)

    Article  Google Scholar 

  45. A.A. Prinz, L.F. Abbott, E. Marder, The dynamic clamp comes of age. Trends Neurosci. 27, 218–224 (2004). https://doi.org/10.1016/j.tins.2004.02.004

    Article  Google Scholar 

  46. S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Boulder, 2008)

    Google Scholar 

  47. H. Haken, J.A.S. Kelso, H. Bunz, A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  48. O. Oullier, G.C. de Guzman, K.J. Jantzen et al., Social coordination dynamics: measuring human bonding. Soc. Neurosci. 3, 178–192 (2008)

    Article  Google Scholar 

  49. J. Lagarde, C. Peham, T. Licka, J.A.S. Kelso, Coordination dynamics of the horse-rider system. J. Mot. Behav. 37, 418–424 (2005)

    Article  Google Scholar 

  50. J. Lagarde, J.A.S. Kelso, Binding of movement, sound and touch: multimodal coordination dynamics. Exp. Brain Res. 173, 673–688 (2006)

    Article  Google Scholar 

  51. J.A.S. Kelso, S.L. Bressler, S. Buchanan et al., A phase transition in human brain and behavior. Phys. Lett. A 169, 134–144 (1992). https://doi.org/10.1016/0375-9601(92)90583-8

    Article  Google Scholar 

  52. J.A.S. Kelso, A. Fuchs, R. Lancaster et al., Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392, 814–817 (1998)

    Article  Google Scholar 

  53. S.L. Bressler, J.A.S. Kelso, Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36 (2001)

    Article  Google Scholar 

  54. K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. J. Cogn. Neurosci. 21, 2420–2433 (2009)

    Article  Google Scholar 

  55. E. Tognoli, J.A.S. Kelso, Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog. Neurobiol. 87, 31–40 (2009). https://doi.org/10.1016/j.pneurobio.2008.09.014

    Article  Google Scholar 

  56. J.A.S. Kelso, J. DelColle, G. Schöner, Action perception as a pattern formation process, in Attention and Performance XIII, ed. by M. Jeannerod (Erlbaum, Hills-dale, NJ, 1990), pp. 139–169

    Google Scholar 

  57. K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Brain networks underlying human timing behavior are influenced by prior context. Proc. Natl. Acad. Sci. U.S.A. 101, 6815–6820 (2004). https://doi.org/10.1073/pnas.0401300101

    Article  Google Scholar 

  58. O. Oullier, K.J. Jantzen, F.L. Steinberg, J.A.S. Kelso, Neural substrates of real and imagined sensorimotor coordination. Cereb. Cortex 15, 975–985 (2004). https://doi.org/10.1093/cercor/bhh198

    Article  Google Scholar 

  59. A. Fuchs, J.A.S. Kelso, Movement coordination, in Encyclopedia of Complexity and Systems Science (Springer, 2009), pp. 5718–5736

    Google Scholar 

  60. R. Huys, D. Perdikis, V.K. Jirsa, Functional architectures and structured flows on manifolds: a dynamical framework for perceptual-motor behavior. Psychol. Rev. 121, 1–113 (2013). https://doi.org/10.1037/a0037014

    Google Scholar 

  61. F. Danion, Do we need internal models for movement control? Nonlinear Dyn. Hum. Behav. 328, 115–134 (2011). https://doi.org/10.1007/978-3-642-16262-6_5

    Article  MathSciNet  Google Scholar 

  62. S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybern. 103, 319–338 (2010)

    Article  MATH  Google Scholar 

  63. R. Huys, B.E. Studenka, N.L. Rheaume et al., Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput. Biol. 4, e1000061 (2008). https://doi.org/10.1371/journal.pcbi.1000061.g004

    Article  MathSciNet  Google Scholar 

  64. R. Huys, V.K. Jirsa, Nonlinear Dynamics in Human Behavior (Springer, Heidelberg, 2010)

    Google Scholar 

  65. J.A.S. Kelso, K.G. Holt, P.N. Kugler, M.T. Turvey, On the concept of coordinative structures as dissipative structures: II. Empirical lines of convergence. Adv Psychol. 1, 49–70 (1980)

    Article  Google Scholar 

  66. P.N. Kugler, J.A.S. Kelso, M.T. Turvey, On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Tutor. Mot. Behav. 3, 47 (1980)

    Google Scholar 

  67. D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19(4), 627–664 (2000)

    Google Scholar 

  68. V.K. Jirsa, J.A.S. Kelso, The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J. Mot. Behav. 37, 35–51 (2005)

    Article  Google Scholar 

  69. P.W. Fink, J.A.S. Kelso, V.K. Jirsa, Perturbation-induced false starts as a test of the Jirsa-Kelso Excitator model. J. Mot. Behav. 41, 147–157 (2009)

    Article  Google Scholar 

  70. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  71. R. Rosen, Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life (Columbia University Press, New York, 1991)

    Google Scholar 

  72. J. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992)

    Google Scholar 

  73. M. Kinsbourne, J.S. Jordan, Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 46, 103–126 (2009)

    Article  Google Scholar 

  74. T.L. Chartrand, J.A. Bargh, The chameleon effect: the perception–behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893 (1999)

    Article  Google Scholar 

  75. A. Fogel, Two principles of communication: co-regulation and framing. New Perspect. Early Commun. Dev. 9–22 (1993)

    Google Scholar 

  76. D.A. Engstrøm, J.A.S. Kelso, T. Holroyd, Reaction-anticipation transitions in human perception-action patterns. Hum. Mov. Sci. 15, 809–832 (1996)

    Article  Google Scholar 

  77. J. Peters, S. Schaal, Policy gradient methods for robotics, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 2219–2225

    Google Scholar 

  78. Friston KJ (2010) The free-energy principle: a unified brain theory? 11:127–138. https://doi.org/10.1038/nrn2787

  79. T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  80. I. Harvey, E. Di Paolo, R. Wood et al., Evolutionary robotics: a new scientific tool for studying cognition. Artif. Life 11, 79–98 (2005)

    Article  Google Scholar 

  81. B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1999)

    Article  Google Scholar 

  82. E.W. Large, M.R. Jones, The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119 (1999)

    Article  Google Scholar 

  83. I. Konvalinka, P. Vuust, A. Roepstorff, A coupled oscillator model of interactive tapping, in Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (Jyvaskyla, Finland, 2009)

    Google Scholar 

  84. E.L. Saltzman, K.G. Munhall, Skill acquisition and development: The roles of state-, parameter-, and graph-dynamics. J. Mot. Behav. 24, 49–57 (1992)

    Article  Google Scholar 

  85. L. Righetti, J. Buchli, A.J. Ijspeert, Adaptive frequency oscillators and applications. Open Cybern. Syst. J. 3, 64–69 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  86. L. Righetti, J. Buchli, A.J. Ijspeert, Dynamic Hebbian learning in adaptive frequency oscillators. Phys. Nonlinear Phenom. 216, 269–281 (2006). https://doi.org/10.1016/j.physd.2006.02.009

    Article  MATH  MathSciNet  Google Scholar 

  87. A.A. Sharp, M.B. O’Neil, L.F. Abbott, E. Marder, The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16, 389–394 (1993)

    Article  Google Scholar 

  88. W.J. Freeman, Consciousness, intentionality and causality. J. Conscious. Stud. 6, 143–172 (1999)

    Google Scholar 

  89. J.-J. Aucouturier, T. Ikegami, The illusion of agency: two engineering approaches to compromise autonomy and reactivity in an artificial system. Adapt. Behav. 17, 402–420 (2009). https://doi.org/10.1177/1059712309344420

    Article  Google Scholar 

  90. X.E. Barandiaran, E. Di Paolo, M. Rohde, Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adapt. Behav. 17, 367–386 (2009)

    Article  Google Scholar 

  91. J.A.S. Kelso, J.P. Scholz, G. Schöner, Dynamics governs switching among patterns of coordination in biological movement. Phys. Lett. A 134, 8–12 (1988)

    Article  Google Scholar 

  92. C. De Luca, K.J. Jantzen, S. Comani et al., Striatal activity during intentional switching depends on pattern stability. J. Neurosci. 30, 3167–3174 (2010). https://doi.org/10.1523/JNEUROSCI.2673-09.2010

    Article  Google Scholar 

  93. E. Tognoli, G. Dumas, J.A.S. Kelso, A roadmap to computational social neuroscience, in Advances in Cognitive Neurodynamics (V) (Springer, Dordrecht, in press)

    Google Scholar 

  94. G. Schöner, J.A.S. Kelso, A dynamic pattern theory of behavioral change. Science 135, 1513–1520 (1988). https://doi.org/10.1126/science.3281253

    Article  Google Scholar 

Download references

Acknowledgements

The research described herein was supported by grants from the National Institute of Mental Health (MH080838), the Davimos Family Endowment for Excellence in Science and The FAU Foundation (Eminent Scholar in Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Dumas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumas, G., Lefebvre, A., Zhang, M., Tognoli, E., Scott Kelso, J.A. (2018). The Human Dynamic Clamp: A Probe for Coordination Across Neural, Behavioral, and Social Scales. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics