Skip to main content

Coarse-Graining to Investigate Cerebral Cortex Dynamics

The Case for Experimental Simplification of Biological Phenomena

  • Chapter
  • First Online:

Abstract

Advances in multi-channel/multi-detector recordings and data analysis over the last decades have led to an explosion in the exploration of complex neural dynamics in mammalian cortex. Powerful methods have been applied to investigate such dynamics, including connectivity measures (correlation, causality, resting state synchrony, etc.), spatiotemporal pattern analyses, and finite-element modelling based on model neurons. These methods were initially applied to data from simple experimental models such as invertebrate neurons/ganglia/tecta, cell cultures, and organotypic slice preparations. Advances in the field have triggered the expanded use of such measures on more complex data, for example to mammalian ex vivo preparations, anesthetized preparations, and mammalian awake behaving preparations. With the increasing surgical, behavioral, and physiological complexity of the preparations themselves, less invasive measurement methods such as optical recordings, massively implanted arrays, or fMRI and other electromagnetic methods must be used to ensure robustness; however, these measures tend to feature lower signal-to-noise ratios, and are often prone to various biases. Furthermore, the high dimensionality of the data itself leads directly to potential errors in programming of analysis algorithms and overinterpretation of statistically significant but biologically insignificant findings. Given this situation, we advocate for the complementary use of the classical biological approach: the use of simplified preparations which may be limited in scope, but which highlight fundamental principles. We illustrate this approach with three experimental examples which use experimental and observational approaches to coarse-grain dynamic spatiotemporal activity patterns, to make coarse-graining observations of clinically relevant oscillations, and to coarse-grain complex behavior in mammalian discrimination learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Jalife, Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89, 766–775 (2011). https://doi.org/10.1093/cvr/cvq364

    Article  Google Scholar 

  2. S.V. Pandit, J. Jalife, Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849–862 (2013). https://doi.org/10.1161/CIRCRESAHA.111.300158

    Article  Google Scholar 

  3. M. Masè, M. Marini, M. Disertor, F. Ravelli, Dynamics of AV coupling during human atrial fibrillation: role of atrial rate. Am. J. Physiol.—Heart Circ. Physiol. 309, H198–H205 (2015). https://doi.org/10.1152/ajpheart.00726.2014

    Article  Google Scholar 

  4. H. Markram, E. Muller, S. Ramaswamy, M.W. Reimann, M. Abdellah, C.A. Sanchez et al., Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015). https://doi.org/10.1016/j.cell.2015.09.029

    Article  Google Scholar 

  5. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts et al., Molecular Biology of the Cell, 6th edn. (Carland Science, New York, 2014)

    Google Scholar 

  6. J.E. Hall, Guyton and Hall Textbook of Medical Physiology, 13th edn. (Saunders, Philadelphia, 2015)

    Google Scholar 

  7. C. Darwin, J. Huxley, The Origin of Species: 150th Anniversary Edition (Signet, New York, 2003)

    Google Scholar 

  8. W.J. Freeman, Effects of surgical isolation and tetanization on prepyriform cortex in cats. J. Neurophysiol. 31, 349–357 (1968)

    Google Scholar 

  9. W.J. Freeman, Mass Action in the Nervous System (Academic Press, New York, 1975)

    Google Scholar 

  10. W.J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Springer, London, New York, 2000)

    Book  MATH  Google Scholar 

  11. J.A.S. Kelso, J.P. Scholz, G. Schöner, Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations. Phys. Lett. A 118, 279–284 (1986). https://doi.org/10.1016/0375-9601(86)90359-2

    Article  Google Scholar 

  12. H. Haken, Synergetics—An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology (1983), http://www.springer.com/us/book/9783642964695. Accessed 26 July 2016

  13. H. Haken, Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition, Softcover reprint of the original 1st edn. (Springer, Berlin, New York, 1996)

    Google Scholar 

  14. J.A.S. Kelso, Dynamic Patterns: The Self-organization of Brain and Behavior, Revised edn. (MIT University Press, Cambridge, 1997)

    Google Scholar 

  15. L. Bai, X. Huang, Q. Yang, J.Y. Wu, Spatiotemporal patterns of an evoked network oscillation in neocortical slices: coupled local oscillators. J. Neurophysiol. 96, 2528–2538 (2006)

    Article  Google Scholar 

  16. M.F.K. Happel, M. Jeschke, F.W. Ohl, Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J. Neurosci. Off. J. Soc. Neurosci. 30, 11114–11127 (2010). https://doi.org/10.1523/JNEUROSCI.0689-10.2010

    Article  Google Scholar 

  17. X. Huang, W.C. Troy, Q. Yang, H. Ma, C.R. Laing, S.J. Schiff et al., Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)

    Article  Google Scholar 

  18. X. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, J. Wu, Spiral wave dynamics in neocortex. Neuron 68, 978–990 (2010). https://doi.org/10.1016/j.neuron.2010.11.007

    Article  Google Scholar 

  19. K. Takagaki, C. Zhang, J.-Y. Wu, F.W. Ohl, Flow detection of propagating waves with temporospatial correlation of activity. J. Neurosci. Methods 200, 207–218 (2011). https://doi.org/10.1016/j.jneumeth.2011.05.023

    Article  Google Scholar 

  20. W. Xu, X. Huang, K. Takagaki, J.Y. Wu, Compression and reflection of visually evoked cortical waves. Neuron 55, 119–129 (2007)

    Article  Google Scholar 

  21. T. Wanger, K. Takagaki, M.T. Lippert, J. Goldschmidt, F.W. Ohl, Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci. 14, 78 (2013). https://doi.org/10.1186/1471-2202-14-78

    Article  Google Scholar 

  22. T. Roehrs, T. Roth, Drug-related sleep stage changes: functional significance and clinical relevance. Sleep Med. Clin. 5, 559–570 (2010). https://doi.org/10.1016/j.jsmc.2010.08.002

    Article  Google Scholar 

  23. D.L. Schomer, F. Lopes da Silva (eds.), Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn. (LWW, Philadelphia, 2010)

    Google Scholar 

  24. M.I. Garrido, J.M. Kilner, K.E. Stephan, K.J. Friston, The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009). https://doi.org/10.1016/j.clinph.2008.11.029

    Article  Google Scholar 

  25. H. Berger, Über das Elektrenkephalogramm des Menschen. Eur. Arch. Psychiatry Clin. Neurosci. 87, 527–570 (1929). https://doi.org/10.1007/BF01797193

    Google Scholar 

  26. K. Takagaki, J. Russell, M.T. Lippert, G.K. Motamedi, Development of the posterior basic rhythm in children with autism. Clin. Neurophysiol. 126, 297–303 (2014). https://doi.org/10.1016/j.clinph.2014.04.022

    Article  Google Scholar 

  27. L.P. Sugrue, G.S. Corrado, W.T. Newsome, Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004). https://doi.org/10.1126/science.1094765

    Article  Google Scholar 

  28. F.W. Ohl, H. Scheich, W.J. Freeman, Change in pattern of ongoing cortical activity with auditory category learning. Nature 412, 733–736 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Stefan Müller for inviting us to present in the Hannover symposium, and Profs. Walter J. Freeman, Gholam Motamedi, Henning Scheich, and Jian-Young Wu for inspiring our work. This work was supported by the Alexander von Humboldt Foundation and Deutsche Forschungsgemeinschaft (DFG) grant SPP 1665. We thank Jennifer Tegtmeier for the illustration in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaroh Takagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takagaki, K., Ohl, F.W. (2018). Coarse-Graining to Investigate Cerebral Cortex Dynamics. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics