Skip to main content

Unpinning of Spiral Waves

  • Chapter
  • First Online:
Book cover Complexity and Synergetics

Abstract

Spiral waves are propagating self-organized structures commonly found in excitable media. Spiral waves of electrical excitation in cardiac systems connect to some arrhythmias, such as tachycardia and fibrillations, potentially leading to sudden cardiac death so that they should be eliminated. Such waves may drift and eventually annihilate at the boundary. However, they can be stabilized, when they are pinned to obstacles, that are weakly excitable or unexcitable regions in the medium. Recently, we used the Belousov-Zhabotinsky solutions, the well-known excitable chemical systems, to study the propagation of spiral waves pinned to obstacles and applied electrical forcing to unpin them in different situations of obstacle size and excitability. We employed simulations with the Oregonator model, a realistic scheme for the Belousov-Zhabotinsky reaction , to confirm the experimental findings as well as to reveal the detailed motions of the spiral waves under some specific conditions that are difficult to be realized in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nettesheim, A. von Oertzen, H.H. Rotermund, G. Ertl, Reaction diffusion patterns in the catalytic CO-oxidation on Pt(110), front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993)

    Article  Google Scholar 

  2. F. Siegert, C.J. Weijer, Digital image processing of optical density wave propagation in Dictyostelium discoideum. J. Cell Sci. 93, 325–335 (1989)

    Google Scholar 

  3. J.M. Davidenko, A.M. Pertsov, R. Salomonz, W. Baxter, J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 335, 349–351 (1992)

    Article  Google Scholar 

  4. A.T. Winfree, Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  Google Scholar 

  5. A.T. Winfree, Scroll-shaped waves of chemical activity in three dimensions. Science 181, 937–939 (1973)

    Article  Google Scholar 

  6. A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994)

    Article  Google Scholar 

  7. E.M. Cherry, F.H. Fenton, Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10, 125016 (2008)

    Article  Google Scholar 

  8. O. Steinbock, S.C. Müller, Chemical spiral rotation is controlled by light-induced artificial cores. Phys. A 188, 61 (1992)

    Article  Google Scholar 

  9. K. Agladze, M.W. Kay, V. Krinsky, N. Sarvazyan, Interaction between spiral and paced waves in cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 293, H503–H513 (2007)

    Article  Google Scholar 

  10. A. Isomura, M. Hörning, K. Agladze, K. Yoshikawa, Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli. Phys. Rev. E 78, 066216 (2008)

    Article  Google Scholar 

  11. M. Tanaka, A. Isomura, M. Hörning, H. Kitahata, K. Agladze, K. Yoshikawa, Unpinning of a spiral wave anchored around a circular obstacle by an external wave train: common aspects of a chemical reaction and cardiomyocyte tissue. Chaos 19, 043114 (2009)

    Article  Google Scholar 

  12. A. Pumir, S. Sinha, S. Sridhar, M. Argentina, M. Hörning, S. Filippi, C. Cherubini, S. Luther, V. Krinsky, Wave-train-induced termination of weakly anchored vortices in excitable media. Phys. Rev. E 81, 010901(R) (2010)

    Article  Google Scholar 

  13. O. Steinbock, J. Schütze, S.C. Müller, Electric-field-induced drift and deformation of spiral waves in an excitable medium. Phys. Rev. Lett. 68, 248–251 (1992)

    Article  Google Scholar 

  14. K.I. Agladze, P. De Kepper, Influence of electric field on rotating spiral waves in the Belousov-Zhabotinsky reaction. J. Phys. Chem. 96, 5239–5242 (1992)

    Article  Google Scholar 

  15. A.P. Muñuzuri, V.A. Davydov, V. Pérez-Muñuzuri, M. Gómez-Gesteira, V. Pérez-Villar, General properties of the electric-field-induced vortex drift in excitable media. Chaos, Solitons Fractals 7, 585–595 (1996)

    Article  MATH  Google Scholar 

  16. C. Luengviriya, S.C. Müller, M.J.B. Hauser, Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201 (2008)

    Article  Google Scholar 

  17. Z.A. Jiménez, Z. Zhang, O. Steinbock, Electric-field-controlled unpinning of scroll waves. Phys. Rev. E 88, 052918 (2013)

    Article  Google Scholar 

  18. M. Sutthiopad, J. Luengviriya, P. Porjai, B. Tomapatanaget, S.C. Müller, C. Luengviriya, Unpinning of spiral waves by electrical forcing in excitable chemical media. Phys. Rev. E 89, 052902 (2014)

    Article  Google Scholar 

  19. J. Luengviriya, M. Sutthiopad, M. Phantu, P. Porjai, J. Kanchanawarin, S.C. Müller, C. Luengviriya, Influence of excitability on unpinning and termination of spiral waves. Phys. Rev. E 90, 052919 (2014)

    Article  Google Scholar 

  20. M. Sutthiopad, J. Luengviriya, P. Porjai, M. Phantu, J. Kanchanawarin, S.C. Müller, C. Luengviriya, Propagation of spiral waves pinned to circular and rectangular obstacles. Phys. Rev. E 91, 052912 (2015)

    Article  MathSciNet  Google Scholar 

  21. C. Luengviriya, U. Storb, M.J.B. Hauser, S.C. Müller, An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions. Phys. Chem. Chem. Phys. 8, 1425–1429 (2006)

    Article  Google Scholar 

  22. R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  Google Scholar 

  23. W. Jahnke, A.T. Winfree, A survey of spiral-wave behaviors in the Oregonator model. Int. J. Bif. Chaos 1, 445–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Dowle, R.M. Mantel, D. Barkley, Fast simulations of waves in three-dimensional excitable media. Int. J. Bif. Chaos 7, 2529–2545 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Y.-Q. Fu, H. Zhang, Z. Cao, B. Zheng, G. Hu, Removal of a pinned spiral by generating target waves with a localized stimulus. Phys. Rev. E 72, 046206 (2005)

    Article  Google Scholar 

  26. A. Pumir, S. Sinha, S. Sridhar, M. Argentina, M. Hörning, S. Filippi, C. Cherubini, S. Luther, V. Krinsky, Wave-train-induced termination of weakly anchored vortices in excitable media. Phys. Rev. E 81, 010901(R) (2010)

    Article  Google Scholar 

  27. Z.Y. Lim, B. Maskara, F. Aguel, R. Emokpae, L. Tung, Spiral wave attachment to millimeter-sized obstacles. Circulation 114, 2113–2121 (2006)

    Article  Google Scholar 

  28. C. Cabo, A.M. Pertsov, J.M. Davidenko, W.T. Baxter, R.A. Gray, J. Jalife, Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. Biophysical J. 70, 1105–1111 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Faculty of Science, the Research and Development Institute (KURDI), the Center for Advanced Studies of Industrial Technology, and the Graduate School, Kasetsart University, and the Office of the Higher Education Commission and King Mongkut’s University of Technology North Bangkok (contract no. KMUTNB-NRU-58-03) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaiya Luengviriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luengviriya, J., Sutthiopad, M., Phantu, M., Porjai, P., Müller, S.C., Luengviriya, C. (2018). Unpinning of Spiral Waves. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics