Skip to main content

The Potential of UAV Derived Image Features for Discriminating Savannah Tree Species

Abstract

Mapping tree species at the single-tree level is an active field of research linking ecology and remote sensing. However, the discrimination of tree species requires the selection of the relevant spectral features derived from imagery. We can extract an extensive number of image parameters even from images with a low spectral resolution, such as Red-Green-Blue (RGB) or near-infrared (NIR) images. Hence, identifying the most relevant image parameters for tree species discrimination is still an issue. We generated 42 parameters from very high resolution images acquired by Unmanned Aerial Vehicles (UAV), such as chromatic coordinates, spectral indices, texture measures and a canopy height model (CHM). The aim of this study was to compare the relevance of these components for classifying savannah tree species. We obtained very high (5 cm) pixel resolution RGB-NIR imagery with a delta-wing UAV in a thorn bush savannah landscape in central Namibia in April 2016. Simultaneously, we gathered ground truth data on the location of 478 individual trees and large shrubs belonging to 16 species. We then used a Random Forest classifier on single and combined thematic sets of image data, e.g. RGB, NIR, texture and in combination with CHM. The best average overall accuracy was 0.77 and the best Cohen´s Kappa value was 0.63 for a combination of RGB imagery and the CHM. Our results are comparable to other studies using hyperspectral data and LiDAR information. We further found that the abundance of the tree species is crucial for successful mapping, with only species with a high abundance being classified satisfactorily. Diverse ecosystems such as savannahs could therefore be a challenge for future tree mapping projects. Nevertheless, this study indicates that UAV-borne RGB imagery seems promising for detailed mapping of tree species.

Keywords

  • Biodiversity monitoring
  • Drone
  • GLCM
  • LAS
  • Namibia
  • NDVI
  • Point cloud
  • Spectral discrimination

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-64332-8_10
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-64332-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baldeck, C.A., Asner, G.P., Martin, R.E., et al.: Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS One. 10, e0118403 (2015). doi:10.1371/journal.pone.0118403

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Baret, F., Guyot, G., Major, D.: TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: 12th Canadian Symposium on Remote Sensing and IGARSS’90, p. 4, Vancouver, Canada, 10–14 July 1989 (1989)

    Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). doi:10.1023/A:1010933404324

    CrossRef  Google Scholar 

  • Bunting, P., Lucas, R.: The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens. Environ. 101, 230–248 (2006). doi:10.1016/j.rse.2005.12.015

    CrossRef  Google Scholar 

  • Cho, M.A., Mathieu, R., Asner, G.P., et al.: Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sens. Environ. 125, 214–226 (2012). doi:10.1016/j.rse.2012.07.010

    CrossRef  Google Scholar 

  • Cho, M.A., Malahlela, O., Ramoelo, A.: Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study. Int. J. Appl. Earth Obs. Geoinf. 38, 349–357 (2015). doi:10.1016/j.jag.2015.01.015

    CrossRef  Google Scholar 

  • Colgan, M.S., Baldeck, C.A., Féret, J.-B., Asner, G.P.: Mapping savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR data. Remote Sens. 4, 3462–3480 (2012). doi:10.3390/rs4113462

    CrossRef  Google Scholar 

  • Conrad, O., Bechtel, B., Bock, M., et al.: System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015). doi:10.5194/gmd-8-1991-2015

    CrossRef  Google Scholar 

  • Culvenor, D.S.: TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Comput. Geosci. 28, 33–44 (2002). doi:10.1016/S0098-3004(00)00110-2

    CrossRef  Google Scholar 

  • Dalponte, M., Coomes, D.A.: Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 7, 1236–1245 (2016). doi:10.1111/2041-210X.12575

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Duro, D.C., Franklin, S.E., Dubé, M.G.: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118, 259–272 (2012). doi:10.1016/j.rse.2011.11.020

    CrossRef  Google Scholar 

  • Dvořák, P.J., Müllerová J., Bartaloš, T., Brůna J.: Unmanned aerial vehicles for alien plant species detection and monitoring. ISPRS – international archives of the photogrammetry, remote sensing and spatial information sciences XL-1/W4: 83–90 (2015). doi:10.5194/isprsarchives-XL-1-W4-83-2015

    Google Scholar 

  • Fassnacht, F.E., Latifi, H., Stereńczak, K., et al.: Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87 (2016). doi:10.1016/j.rse.2016.08.013

    CrossRef  Google Scholar 

  • Fischer, T., Veste, M., Eisele, A., et al.: Small scale spatial heterogeneity of Normalized Difference Vegetation Indices (NDVIs) and hot spots of photosynthesis in biological soil crusts. Flora – Morphol. Distrib. Funct. Ecol. Plants. 207, 159–167 (2012). doi:10.1016/j.flora.2012.01.001

    CrossRef  Google Scholar 

  • Giess, W.: A preliminary vegetation map of Namibia. Dinteria. 4, 1–112 (1998)

    Google Scholar 

  • Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    CrossRef  Google Scholar 

  • Huete, A.R.: A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988). doi:10.1016/0034-4257(88)90106-X

    CrossRef  Google Scholar 

  • Immitzer, M., Atzberger, C., Koukal, T.: Tree species classification with random forest using very high spatial resolution 8-Band WorldView-2 satellite data. Remote Sens. 4, 2661–2693 (2012). doi:10.3390/rs4092661

    CrossRef  Google Scholar 

  • Isenburg, M.: LAStools, efficient LiDAR processing software. rapidlasso GmbH (2016)

    Google Scholar 

  • Jürgens, N., Schmiedel, U., Haarmeyer, D.H., et al.: The BIOTA biodiversity observatories in Africa—a standardized framework for large-scale environmental monitoring. Environ. Monit. Assess. 184, 655–678 (2012). doi:10.1007/s10661-011-1993-y

    CrossRef  PubMed  Google Scholar 

  • Kang, J., Wang, L., Chen, F., Niu, Z.: Identifying tree crown areas in undulating eucalyptus plantations using JSEG multi-scale segmentation and unmanned aerial vehicle near-infrared imagery. Int. J. Remote Sens. 38, 1–17 (2016). doi:10.1080/01431161.2016.1253900

    CrossRef  Google Scholar 

  • Klaassen, E.S., Kwembeya, E.G.: A checklist of Namibian indigenous and naturalised plants. 2013. Occasional Contributions No 5, National Botanical Research Institute, Windhoek, Namibia (2013).

    Google Scholar 

  • Krefis, A.C., Schwarz, N.G., Nkrumah, B., et al.: Spatial analysis of land cover determinants of malaria incidence in the Ashanti Region, Ghana. PLoS One. 6, e17905 (2011). doi:10.1371/journal.pone.0017905

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013)

    CrossRef  Google Scholar 

  • Kuhn, M.K., Weston, S., Williams, A., et al.: Caret: Classification and Regression Training. R package version 6.0-70. https://CRAN.Rproject.org/package=caret (2016)

  • Kyalangalilwa, B., Boatwright, J.S., Daru, B.H., et al.: Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013). doi:10.1111/boj.12047

    CrossRef  Google Scholar 

  • Liaw, A., Wiener, M.: Classification and regression by random Forest. R News. 2, 18–22 (2002)

    Google Scholar 

  • Lisein, J., Michez, A., Claessens, H., Lejeune, P.: Discrimination of deciduous tree species from time series of unmanned aerial system imagery. PLoS One. 10, e0141006 (2015). doi:10.1371/journal.pone.0141006

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lucas, R., Bunting, P., Paterson, M., Chisholm, L.: Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sens. Environ. 112, 2088–2103 (2008). doi:10.1016/j.rse.2007.10.011

    CrossRef  Google Scholar 

  • Magurran, A.E., McGill, B.J.: Biological Diversity: Frontiers in Measurement and Assessment, 1st edn. Oxford University Press, Oxford/New York (2011).

    Google Scholar 

  • McInerney, D., Kempeneers, P.: Orfeo toolbox. In: Open Source Geospatial Tools, pp. 199–217. Springer International Publishing, Basel (2015).

    Google Scholar 

  • Meyer, G.E., Neto, J.C.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63, 282–293 (2008). doi:10.1016/j.compag.2008.03.009

    CrossRef  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., et al.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7 https://CRAN.R-project.org/package=e1071 (2015)

  • Naidoo, L., Cho, M.A., Mathieu, R., Asner, G.: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 69, 167–179 (2012). doi:10.1016/j.isprsjprs.2012.03.005

    CrossRef  Google Scholar 

  • Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005). doi:10.1080/01431160412331269698

    CrossRef  Google Scholar 

  • Perry, C.R., Lautenschlager, L.F.: Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 14, 169–182 (1984). doi:10.1016/0034-4257(84)90013-0

    CrossRef  Google Scholar 

  • QGIS Development team. QGIS Geographic Information System. Open Source Geospatial Foundation (2016)

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S.: A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994). doi:10.1016/0034-4257(94)90134-1

    CrossRef  Google Scholar 

  • Qian, Y., Zhou, W., Yan, J., et al.: Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7, 153–168 (2014). doi:10.3390/rs70100153

    CrossRef  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016)

    Google Scholar 

  • Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., Streibig, J.C.: Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res. 53, 242–248 (2013). doi:10.1111/wre.12026

    CrossRef  Google Scholar 

  • Rasmussen, J., Ntakos, G., Nielsen, J., et al.: Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 74, 75–92 (2016). doi:10.1016/j.eja.2015.11.026

    CrossRef  Google Scholar 

  • Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction, 5th edn. Springer, Berlin (2013)

    CrossRef  Google Scholar 

  • Schirrmann, M., Giebel, A., Gleiniger, F., et al.: Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 8, 706 (2016). doi:10.3390/rs8090706

    CrossRef  Google Scholar 

  • SenseFly. User Manual: S110 RGB/NIR /RE camera. SenseFly Ltd., Lausanne, Switzerland (2014)

    Google Scholar 

  • SenseFly. eBee Sensefly: Extended User MANUAL eBee and eBee Ag. Revision 17, June 2015. SenseFly Ltd., Lausanne, Switzerland (2015)

    Google Scholar 

  • Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K.: Vegetation indices: advances made in biomass estimation and vegetation monitoring in the Last 30 years. Geocarto Int. 21, 21–28 (2006). doi:10.1080/10106040608542399

    CrossRef  Google Scholar 

  • Singh, M., Evans, D., Tan, B.S., Nin, C.S.: Mapping and characterizing selected canopy tree species at the Angkor World Heritage Site in Cambodia using aerial data. PLoS One. 10, e0121558 (2015). doi:10.1371/journal.pone.0121558

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Thiam A.K.: Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel Region: The Case of Southern Mauritania (1998)

    Google Scholar 

  • Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979)

    CrossRef  Google Scholar 

  • Vergara-Díaz, O., Zaman-Allah, M.A., Masuka, B., et al.: A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. (2016). doi:10.3389/fpls.2016.00666

  • Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A.: Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE. 38, 259–269 (1995). doi:10.13031/2013.27838

    CrossRef  Google Scholar 

  • Zhang, F., Zaman, Q.U., Percival, D.C., Schumann, A.W.: Detecting bare spots in wild blueberry fields using digital color photography. Appl. Eng. Agric. 26, 723–728 (2010)

    CrossRef  Google Scholar 

Download references

Acknowledgments

Our gratitude to the Pommersche Farmereigesellschaft and their staff for allowing us to work on the farm Erichsfelde. The work was financially supported by the SASSCAL initiative, with funding by the German Federal Ministry of Education and Research; BMBF Funding Nr: 01LG1201M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oldeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Oldeland, J., Große-Stoltenberg, A., Naftal, L., Strohbach, B.J. (2017). The Potential of UAV Derived Image Features for Discriminating Savannah Tree Species. In: Díaz-Delgado, R., Lucas, R., Hurford, C. (eds) The Roles of Remote Sensing in Nature Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-64332-8_10

Download citation