Skip to main content

Light and Its Application to Relativity

  • Chapter
  • First Online:
Book cover The Story of Light Science
  • 1943 Accesses

Abstract

In 1851 Fizeau made an interferometric measurement to determine how the speed of light is affected in a moving medium [1]. The chosen medium was water, flowing at a velocity v of about 700 cm/s through the U-tube configuration shown in Fig. 3.1. Each tube section had a length ≈150 mm, with a tube diameter ≈5.3 cm. Light from a source is directed to a 50/50 beamsplitter and lens, where two collimated beams A and B entered the end of each tube. The light beams exited the other ends of the tubes, where they were focused to a flat mirror by a second lens. The reflected beams were then returned through the tubes and focused to a screen where they formed interference fringes, the path lengths of each beam being the same. Light beam A moved with the velocity of the water, while light beam B moved against the velocity of the water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.H. Fizeau, Sur les hypothèses relatives à l’éther lumineux. Annales de Chimie et de Physique III lvii, 385–404 (1859)

    Google Scholar 

  2. A. Michelson, E. Morley, Influence of motion of the medium on the velocity of light. Am. J. Sci. 31(185), 377–386 (1886). doi:10.2475/ajs.s3-31.185.377

    Article  Google Scholar 

  3. A. Michelson, E. Morley, On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. 234(203), 333–345 (1887). doi:10.2475/ajs.s3.203.333

    Article  MATH  Google Scholar 

  4. N. Hamdan, Can the Lorentz-FitzGerald contraction hypothesis be real? Proc. Pak. Acad. Sci. 44(2), 121–128 (2007)

    Google Scholar 

  5. R. Serway, Physics for scientists and engineers/with modern physics (Holt, Rinehart and Winston, New York, 1983), pp. 839–841

    Google Scholar 

  6. A. Einstein, On the electrodynamics of moving bodies. Ann. Phys. 17, 891–921 (1905). doi:10.1002/andp.19053221004

    Article  MATH  Google Scholar 

  7. A. Einstein, Does the inertia of a body depend on its energy content? Ann. Phys. 17, 639–641 (1905). doi:10.1002/andp.19052231314

    Article  Google Scholar 

  8. R. Baierlein, E = mc2, in Newton to Einstein: The Trail of Light (Cambridge University Press, Cambridge, United Kingdom, 2002)

    Google Scholar 

  9. E. Fischbach et al., New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism. Phys. Rev. Lett. 73(4), 514–517 (1974). doi:10.1103/physRevLett.73.514

    Article  ADS  Google Scholar 

  10. L.-C. Tu, J. Luo, G.T. Gillies, The mass of the photon. Rep. Prog. Phys. 68(1), 77–130 (2004). doi:10.1088/0034-4885/68/R02

    Article  ADS  Google Scholar 

  11. A. Einstein, On the relativity principle and the conclusions drawn from it. Jahrbuch der Radioaktivität 4, 411–462 (1907)

    ADS  Google Scholar 

  12. A. Einstein, On the influence of gravitation on the propagation of light. Ann. Phys. 35, 898–908 (1911)

    Article  Google Scholar 

  13. A. Einstein, Explanation of the perihelion motion of mercury from the general theory of relativity. Preussische Akademie der Wissenschaften, Sitzungsberichte, Part 2, 831–839 (1915)

    Google Scholar 

  14. R.J. Kennedy, E.M. Thorndike, Experimental establishment of the relativity of time. Phys. Rev. 42(3), 400–418 (1932). doi:10.1103/PhysRev.42.400

    Article  ADS  MATH  Google Scholar 

  15. H. Ives, G. Stilwell, An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–226 (1938). doi:10.1364/JOSA.28.000215

    Article  ADS  Google Scholar 

  16. H. Ives, G. Stilwell, An experimental study of the rate of a moving atomic clock II. J. Opt. Soc. Am. 31, 369–374 (1941). doi:10.1364/JOSA.31.000369

    Article  ADS  Google Scholar 

  17. D. Hasselkamp, E. Mondry, A. Scharmann, Direct observation of the transversal Doppler-shift. Zeitschrift für Physik A 289(2), 151–155 (1979). doi:10.1007/BF1435932

    Article  ADS  Google Scholar 

  18. S. Reinhardt et al., Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys. 3, 861–864 (2007). doi:10.1038/nphys778

    Article  Google Scholar 

  19. B. Rossi, D.B. Hall, Variation of the rate of decay of mesotrons with momentum. Phys. Rev. 59(3), 223–228 (1941). doi:10.1103/PhysRev.59.223

    Article  ADS  Google Scholar 

  20. L. Liu, P. Solis, The speed and lifetime of cosmic ray muons. MIT Undergraduate Report, 18 Nov 2007

    Google Scholar 

  21. D.H. Frisch, J.H. Smith, Measurement of the relativistic time dilation using μ-mesons. Am. J. Phys. 31(5), 342–355 (1963). doi:10.1119/1.1969508

    Article  ADS  Google Scholar 

  22. H. Bailey et al., Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature 268, 301–305 (1977). doi:10.1038/268301a0

    Article  ADS  Google Scholar 

  23. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177(4044), 166–168 (1972). doi:10.1126/science.177.4044.166

    Article  ADS  Google Scholar 

  24. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: observed relativistic time gains. Science 177(4044), 168–170 (1972)

    Article  ADS  Google Scholar 

  25. News from the National Physical Laboratory, Metronia, Issue 18, United Kingdom, Winter (2005)

    Google Scholar 

  26. F. Winterberg, Relativistische zeitdilatation eines künstlichen satelliten. Astronautica Acta 2(1), 25–29 (1956)

    MathSciNet  Google Scholar 

  27. F.T. Trouton, A. Rankine, On the electrical resistance of moving matter. Proc. R. Soc. 80, 420 (1908). doi:10.1098/rspa.1908.0037

    Article  ADS  MATH  Google Scholar 

  28. C. Sherwin, New experimental test of Lorentz’s theory of relativity. Phys. Rev. A 35(9), 3650–3654 (1987). doi:10.1103/PhysRevA.35.3650

    Article  ADS  Google Scholar 

  29. F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of 29 May 1919. Philos. Trans. R. Soc. Lond. 220A, 291–333 (1920). doi:10.1098/rsta.1920.0009

    Article  ADS  Google Scholar 

  30. T. Alväger et al., Test of the second postulate of special relativity in the GeV region. Phys. Lett. 12(3), 260–262 (1964). doi:10.1016/0031-9163(64)91095-9

    Article  ADS  Google Scholar 

  31. G.C. Babcock, T.G. Bergman, Determination of the constancy of the speed of light. J. Opt. Soc. Am. 54(2), 147–150 (1964). doi:10.1364/JOSA.54.000147

    Article  ADS  Google Scholar 

  32. K. Brecher, Is the speed of light independent of the velocity of the source? Phys. Rev. Lett. 39(17), 1051–1054 (1977). doi:10.1103/PhysRevLett.39.1051

    Article  ADS  Google Scholar 

  33. K. Brecher, Precision test of special relativity using gamma ray bursts. Bull. Am. Phys. Soc. 45(2), No. 34, May 2000 Meeting, Long Beach, California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis F. Vanderwerf .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vanderwerf, D.F. (2017). Light and Its Application to Relativity. In: The Story of Light Science. Springer, Cham. https://doi.org/10.1007/978-3-319-64316-8_3

Download citation

Publish with us

Policies and ethics