Pain Management in Liver Transplantation

  • Paul Weyker
  • Christopher Webb
  • Leena Mathew


Liver transplantation is a complex surgical procedure requiring comprehensive and intensive multidisciplinary involvement in the perioperative period. Over the years there has been substantial evolution of the surgical technique and the perioperative management that resulted in improved outcomes. The anesthesiologist and intensivist play a crucial role throughout the perioperative period and adequate analgesic delivery is of utmost importance during this period. Providing adequate pain control may prove to be challenging and there are unique considerations in patients undergoing liver transplantations or resections. In addition to relieving mental suffering associated with pain, appropriate pain control is essential to prevent the profound physiologic consequences of inadequate analgesia. This chapter aims to address and discuss in detail the analgesic issues in liver transplantation and liver resection.

The goals of analgesia during liver transplantation are similar to...


Methadone Opioids Epidural analgesia Transverse abdominis plane Duramorph Transcutaneous electrical nerve stimulation 


  1. 1.
    O’Leary JG, Lepe R, Davis GL. Indications for liver transplantation. Gastroenterology. 2008;134(6):1764–76.CrossRefPubMedGoogle Scholar
  2. 2.
    Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84(7):613–24.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    McLean AJ, Morgan DJ. Clinical pharmacokinetics in patients with liver disease. Clin Pharmacokinet. 1991;21(1):42–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Verbeeck RK, Horsmans Y. Effect of hepatic insufficiency on pharmacokinetics and drug dosing. Pharm World Sci. 1998;20(5):183–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Howden CW, Birnie GG, Brodie MJ. Drug metabolism in liver disease. Pharmacol Ther. 1989;40(3):439–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet. 1999;37(1):17–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoyumpa AM, Schenker S. Is glucuronidation truly preserved in patients with liver disease? Hepatology. 1991;13(4):786–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Wood M, Wood AJJ. Drugs and anesthesia: pharmacology for anesthesiologists. 2nd ed. Baltimore: Williams & Wilkins; 1990.Google Scholar
  9. 9.
    Andersen G, Christrup LL, Sjogren P, Hansen SH, Jensen NH. Changing M3G/M6G ratios and pharmacodynamics in a cancer patient during long-term morphine treatment. J Pain Symptom Manag. 2002;23(2):161–4.CrossRefGoogle Scholar
  10. 10.
    Mazoit JX, Sandouk P, Zetlaoui P, Scherrmann JM. Pharmacokinetics of unchanged morphine in normal and cirrhotic subjects. Anesth Analg. 1987;66(4):293–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Hasselstrom J, Eriksson S, Persson A, Rane A, Svensson JO, Sawe J. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990;29(3):289–97.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Crotty B, Watson KJ, Desmond PV, Mashford ML, Wood LJ, Colman J, et al. Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol. 1989;36(5):501–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Chandok N, Watt KD. Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc. 2010;85(5):451–8.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Nilsson MI, Meresaar U, Anggard E. Clinical pharmacokinetics of methadone. Acta Anaesthesiol Scand Suppl. 1982;74:66–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Murphy EJ. Acute pain management pharmacology for the patient with concurrent renal or hepatic disease. Anaesth Intensive Care. 2005;33(3):311–22.PubMedGoogle Scholar
  16. 16.
    Novick DM, Kreek MJ, Arns PA, Lau LL, Yancovitz SR, Gelb AM. Effect of severe alcoholic liver disease on the disposition of methadone in maintenance patients. Alcohol Clin Exp Res. 1985;9(4):349–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Kreek MJ, Bencsath FA, Field FH. Effects of liver disease on urinary excretion of methadone and metabolites in maintenance patients: quantitation by direct probe chemical ionization mass spectrometry. Biomed Mass Spectrom. 1980;7(9):385–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician. 2008;11(2 Suppl):S133–53.PubMedGoogle Scholar
  19. 19.
    Wright AW, Mather LE, Smith MT. Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide. Life Sci. 2001;69(4):409–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol. 2000;27(7):524–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee MA, Leng ME, Tiernan EJ. Retrospective study of the use of hydromorphone in palliative care patients with normal and abnormal urea and creatinine. Palliat Med. 2001;15(1):26–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Paix A, Coleman A, Lees J, Grigson J, Brooksbank M, Thorne D, et al. Subcutaneous fentanyl and sufentanil infusion substitution for morphine intolerance in cancer pain management. Pain. 1995;63(2):263–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy MR, Hug CC Jr, McClain DA. Dose-independent pharmacokinetics of fentanyl. Anesthesiology. 1983;59(6):537–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Wiesner G, Taeger K, Peter K. Serum protein binding of fentanyl. The effect of postoperative acute phase reaction with elevated alpha 1-acid glycoprotein and methodologic problems in determination by equilibrium dialysis. Anaesthesist. 1996;45(4):323–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Feierman DE, Lasker JM. Metabolism of fentanyl, a syntheticopioidanalgesic, byhumanlivermicrosomes. Role of CYP3A4. Drug Metab Dispos. 1996;24(9):932–9.PubMedGoogle Scholar
  26. 26.
    Haberer JP, Schoeffler P, Couderc E, Duvaldestin P. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth. 1982;54(12):1267–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Hudson RJ, Thomson IR, Cannon JE, Friesen RM, Meatherall RC. Pharmacokinetics of fentanyl in patients undergoing abdominal aortic surgery. Anesthesiology. 1986;64(3):334–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Cone EJ, Gorodetzky CW, Yousefnejad D, Buchwald WF, Johnson RE. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos. 1984;12(5):577–81.PubMedGoogle Scholar
  29. 29.
    Kress HG. Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine. Eur J Pain. 2009;13(3):219–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Heit HA, Gourlay DL. Buprenorphine: new tricks with an old molecule for pain management. Clin J Pain. 2008;24(2):93–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Sadee W, Rosenbaum JS, Herz A. Buprenorphine: differential interaction with opiate receptor subtypes in vivo. J Pharmacol Exp Ther. 1982;223(1):157–62.PubMedGoogle Scholar
  32. 32.
    Tyers MB. A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol. 1980;69(3):503–12.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Virk MS, Arttamangkul S, Birdsong WT, Williams JT. Buprenorphine is a weak partial agonist that inhibits opioid receptor desensitization. J Neurosci. 2009;29(22):7341–8.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Boas RA, Villiger JW. Clinical actions of fentanyl and buprenorphine. The significance of receptor binding. Br J Anaesth. 1985;57(2):192–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Coursin DB, Maccioli GA. Dexmedetomidine. Curr Opin Crit Care. 2001;7(4):221–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Scheinin H, Virtanen R, MacDonald E, Lammintausta R, Scheinin M. Medetomidine—a novel alpha 2-adrenoceptor agonist: a review of its pharmacodynamic effects. Prog Neuro-Psychopharmacol Biol Psychiatry. 1989;13(5):635–51.CrossRefGoogle Scholar
  37. 37.
    Mantz J, Josserand J, Hamada S. Dexmedetomidine: new insights. Eur J Anaesthesiol. 2011;28(1):3–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Khan ZP, Ferguson CN, Jones RM. Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia. 1999;54(2):146–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Langer SZ, Arbilla S. Presynaptic receptors and modulation of the release of noradrenaline, dopamine and GABA. Postgrad Med J. 1981;57(Suppl 1):18–29.PubMedGoogle Scholar
  40. 40.
    Hayashi Y, Maze M. Alpha 2 adrenoceptor agonists and anaesthesia. Br J Anaesth. 1993;71(1):108–18.CrossRefPubMedGoogle Scholar
  41. 41.
    Hayashi Y, Rabin BC, Guo TZ, Maze M. Role of pertussis toxin-sensitive G-proteins in the analgesic and anesthetic actions of alpha 2-adrenergic agonists in the rat. Anesthesiology. 1995;83(4):816–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Guo TZ, Jiang JY, Buttermann AE, Maze M. Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology. 1996;84(4):873–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Pertovaara A, Kauppila T, Jyvasjarvi E, Kalso E. Involvement of supraspinal and spinal segmental alpha-2-adrenergic mechanisms in the medetomidine-induced antinociception. Neuroscience. 1991;44(3):705–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Karol MD. Pharmacokinetics and interaction pharmacodynamics of dexmedetomidine in humans. Bailleres Best Pract Res Clin Anesthesiol. 2000;14(2):261–9.CrossRefGoogle Scholar
  45. 45.
    Enomoto Y, Kudo T, Saito T, Hori T, Kaneko M, Matsui A, et al. Prolonged use of dexmedetomidine in an infant with respiratory failure following living donor liver transplantation. Paediatr Anaesth. 2006;16(12):1285–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Guinter JR, Kristeller JL. Prolonged infusions of dexmedetomidine in critically ill patients. Am J Health Syst Pharm. 2010;67(15):1246–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Lin TF, Yeh YC, Lin FS, Wang YP, Lin CJ, Sun WZ, et al. Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia. Br J Anaesth. 2009;102(1):117–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Aho MS, Erkola OA, Scheinin H, Lehtinen AM, Korttila KT. Effect of intravenously administered dexmedetomidine on pain after laparoscopic tubal ligation. Anesth Analg. 1991;73(2):112–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Dauri M, Faria S, Gatti A, Celidonio L, Carpenedo R, Sabato AF. Gabapentin and pregabalin for the acute post-operative pain management. A systematic-narrative review of the recent clinical evidences. Curr Drug Targets. 2009;10(8):716–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Goa KL, Sorkin EM. Gabapentin. A review of its pharmacological properties and clinical potential in epilepsy. Drugs. 1993;46(3):409–27.CrossRefPubMedGoogle Scholar
  51. 51.
    Roth K, Lynn J, Zhong Z, Borum M, Dawson NV. Dying with end stage liver disease with cirrhosis: insights from SUPPORT. Study to understand prognoses and preferences for outcomes and risks of treat-ment. J Am Geriatr Soc. 2000;48(5 Suppl):S122–30.PubMedGoogle Scholar
  52. 52.
    Weinrieb RM, Barnett R, Lynch KG, DePiano M, Atanda A, Olthoff KM. A matched comparison study of medical and psychiatric complications and anesthesia and analgesia requirements in methadone-maintained liver transplant recipients. Liver Transpl. 2004;10(1):97–106.CrossRefPubMedGoogle Scholar
  53. 53.
    Kanchana TP, Kaul V, Manzarbeitia C, Reich DJ, Hails KC, Munoz SJ, et al. Liver transplantation for patients on methadone maintenance. Liver Transpl. 2002;8(9):778–82.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu LU, Schiano TD, Lau N, O’Rourke M, Min AD, Sigal SH, et al. Survival and risk of recidivism in methadone-dependent patients undergoing liver transplantation. Am J Transplant. 2003;3(10):1273–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Hancock MM, Prosser CC, Ransibrahmanakul K, Lester L, Craemer E, Bourgeois JA, et al. Liver transplant and hepatitis C in methadone maintenance therapy: a case report. Subst Abuse Treat Prev Policy. 2007;2:5.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Jiao M, Greanya ED, Haque M, Yoshida EM, Soos JG. Methadone maintenance therapy in liver transplantation. Prog Transplant. 2010;20(3):209–14; quiz 15.CrossRefPubMedGoogle Scholar
  57. 57.
    Campiglia L, Consales G, De Gaudio AR. Pre-emptive analgesia for postoperative pain control: a review. Clin Drug Investig. 2010;30(Suppl 2):15–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Katz J, McCartney CJ. Current status of preemptive analgesia. Curr Opin Anaesthesiol. 2002;15(4):435–41.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen JP, Jawan B, Chen CL, Wang CH, Cheng KW, Wang CC, et al. Comparison of postoperative morphine requirements in healthy living liver donors, patients with hepatocellular carcinoma undergoing partial hepatectomy, and liver transplant recipients. Transplant Proc. 2010;42(3):701–2.CrossRefPubMedGoogle Scholar
  60. 60.
    Donovan KL, Janicki PK, Striepe VI, Stoica C, Franks WT, Pinson CW. Decreased patient analgesic requirements after liver transplantation and associated neuropeptide levels. Transplantation. 1997;63(10):1423–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Eisenach JC, Plevak DJ, Van Dyke RA, Southorn PA, Danielson DR, Krom RA, et al. Comparison of analgesic requirements after liver transplantation and cholecystectomy. Mayo Clin Proc. 1989;64(3):356–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Moretti EW, Robertson KM, Tuttle-Newhall JE, Clavien PA, Gan TJ. Orthotopic liver transplant patients require less postoperative morphine than do patients undergoing hepatic resection. J Clin Anesth. 2002;14(6):416–20.CrossRefPubMedGoogle Scholar
  63. 63.
    Trzebicki J, Nicinska B, Blaszczyk B, Jureczko L, Kolacz M, Pacholczyk M, et al. Thoracic epidural analgesia in anaesthesia for liver transplantation: the 10-year experience of a single centre. Ann Transplant. 2010;15(2):35–9.PubMedGoogle Scholar
  64. 64.
    Fazakas J, Toth S, Fule B, Smudla A, Mandli T, Radnai M, et al. Epidural anesthesia? No of course. Transplant Proc. 2008;40(4):1216–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Ejlersen E, Andersen HB, Eliasen K, Mogensen T. A comparison between preincisional and postincisional lidocaine infiltration and postoperative pain. Anesth Analg. 1992;74(4):495–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Hashemi K, Middleton MD. Subcutaneous bupivacaine for postoperative analgesia after herniorrhaphy. Ann R Coll Surg Engl. 1983;65(1):38–9.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Randall JK, Goede A, Morgan-Warren P, Middleton SB. Randomized clinical trial of the influence of local subcutaneous infiltration vs subcutaneous and deep infiltration of local anaesthetic on pain after appendicectomy. Color Dis. 2010;12(5):477–9.CrossRefGoogle Scholar
  68. 68.
    Ausems ME, Hulsewe KW, Hooymans PM, Hoofwijk AG. Postoperative analgesia requirements at home after inguinal hernia repair: effects of wound infiltration on postoperative pain. Anaesthesia. 2007;62(4):325–31.CrossRefPubMedGoogle Scholar
  69. 69.
    Lohsiriwat V, Lert-akyamanee N, Rushatamukayanunt W. Efficacy of pre-incisional bupivacaine infiltration on postoperative pain relief after appendectomy: prospective double-blind randomized trial. World J Surg. 2004;28(10):947–50.CrossRefPubMedGoogle Scholar
  70. 70.
    Kuan YM, Smith S, Miles C, Grigg M. Effectiveness of intra-operative wound infiltration with long-acting local anaesthetic. ANZ J Surg. 2002;72(1):18–20.CrossRefPubMedGoogle Scholar
  71. 71.
    Victory RA, Gajraj NM, Van Elstraete A, Pace NA, Johnson ER, White PF. Effect of preincision versus postincision infiltration with bupivacaine on postoperative pain. J Clin Anesth. 1995;7(3):192–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Brower MC, Johnson ME. Adverse effects of local anesthetic infiltration on wound healing. Reg Anesth Pain Med. 2003;28(3):233–40.CrossRefPubMedGoogle Scholar
  73. 73.
    Venkataramanan R, Habucky K, Burckart GJ, Ptachcinski RJ. Clinical pharmacokinetics in organ transplant patients. Clin Pharmacokinet. 1989;16(3):134–61.CrossRefPubMedGoogle Scholar
  74. 74.
    Gil KM, Ginsberg B, Muir M, Sykes D, Williams DA. Patient-controlled analgesia in postoperative pain: the relation of psychological factors to pain and analgesic use. Clin J Pain. 1990;6(2):137–42.CrossRefPubMedGoogle Scholar
  75. 75.
    DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 2008;10(6):492–9.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Hamza MA, White PF, Ahmed HE, Ghoname EA. Effect of the frequency of transcutaneous electrical nerve stimulation on the postoperative opioid analgesic requirement and recovery profile. Anesthesiology. 1999;91(5):1232–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109–21.CrossRefPubMedGoogle Scholar
  78. 78.
    Wall PD, Sweet WH. Temporary abolition of pain in man. Science. 1967;155(758):108–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(699):971–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Wright A, Sluka KA. Nonpharmacological treatments for musculoskeletal pain. Clin J Pain. 2001;17(1):33–46.CrossRefPubMedGoogle Scholar
  81. 81.
    DeLeo JA. Basic science of pain. J Bone Joint Surg Am. 2006;88(Suppl 2):58–62.PubMedGoogle Scholar
  82. 82.
    Maeda Y, Lisi TL, Vance CG, Sluka KA. Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res. 2007;1136(1):43–50.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. 2001;298(1):257–63.PubMedGoogle Scholar
  84. 84.
    Han JS, Chen XH, Sun SL, Xu XJ, Yuan Y, Yan SC, et al. Effect of low- and high-frequency TENS on Metenkephalin-Arg-Phe and dynorphin a immunoreactivity in human lumbar CSF. Pain. 1991;47(3):295–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Hughes GS Jr, Lichstein PR, Whitlock D, Harker C. Response of plasma beta-endorphins to transcutaneous electrical nerve stimulation in healthy subjects. Phys Ther. 1984;64(7):1062–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Salar G, Job I, Mingrino S, Bosio A, Trabucchi M. Effect of transcutaneous electrotherapy on CSF beta-endorphin content in patients without pain problems. Pain. 1981;10(2):169–72.CrossRefPubMedGoogle Scholar
  87. 87.
    Erdogan M, Erdogan A, Erbil N, Karakaya HK, Demircan A. Prospective, randomized, placebo-controlled study of the effect of TENS on postthoracotomy pain and pulmonary function. World J Surg. 2005;29(12):1563–70.CrossRefPubMedGoogle Scholar
  88. 88.
    McDonnell JG, O’Donnell B, Curley G, Heffernan A, Power C, Laffey JG. The analgesic efficacy of transversus abdominis plane block after abdominal surgery: a prospective randomized controlled trial. Anesth Analg. 2007;104(1):193–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Carney J, McDonnell JG, Ochana A, Bhinder R, Laffey JG. The transversus abdominis plane block provides effective postoperative analgesia in patients undergoing total abdominal hysterectomy. Anesth Analg. 2008;107(6):2056–60.CrossRefPubMedGoogle Scholar
  90. 90.
    O’Donnell BD, McDonnell JG, McShane AJ. The transversus abdominis plane (TAP) block in open retropubic prostatectomy. Reg Anesth Pain Med. 2006;31(1):91.CrossRefPubMedGoogle Scholar
  91. 91.
    Allcock E, Spencer E, Frazer R, Applegate G, Buckenmaier C III. Continuous transversus abdominis plane (TAP) block catheters in a combat surgical environment. Pain Med. 2010;11(9):1426–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Farooq M, Carey M. A case of liver trauma with a blunt regional anesthesia needle while performing transversus abdominis plane block. Reg Anesth Pain Med. 2008;33(3):274–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Merion RM. Current status and future of liver transplantation. Semin Liver Dis. 2010;30(4):411–21.CrossRefPubMedGoogle Scholar
  94. 94.
    Cywinski JB, Parker BM, Xu M, Irefin SA. A comparison of postoperative pain control in patients after right lobe donor hepatectomy and major hepatic resection for tumor. Anesth Analg. 2004;99(6):1747–52; table of contents.CrossRefPubMedGoogle Scholar
  95. 95.
    Siniscalchi A, Begliomini B, De Pietri L, Braglia V, Gazzi M, Masetti M, et al. Increased prothrombin time and platelet counts in living donor right hepatectomy: implications for epidural anesthesia. Liver Transpl. 2004;10(9):1144–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Choi SJ, Gwak MS, Ko JS, Kim GS, Ahn HJ, Yang M, et al. The changes in coagulation profile and epidural catheter safety for living liver donors: a report on 6 years of our experience. Liver Transpl. 2007;13(1):62–70.CrossRefPubMedGoogle Scholar
  97. 97.
    Ozkardesler S, Ozzeybek D, Alaygut E, Unek T, Akan M, Astarcioglu H, et al. Anesthesia-related complications in living liver donors: the experience from one center and the reporting of one death. Am J Transplant. 2008;8(10):2106–10.CrossRefPubMedGoogle Scholar
  98. 98.
    Roy JD, Massicotte L, Sassine MP, Seal RF, Roy A. A comparison of intrathecal morphine/fentanyl and patient-controlled analgesia with patient-controlled analgesia alone for analgesia after liver resection. Anesth Analg. 2006;103(4):990–4.CrossRefPubMedGoogle Scholar
  99. 99.
    Ko JS, Choi SJ, Gwak MS, Kim GS, Ahn HJ, Kim JA, et al. Intrathecal morphine combined with intravenous patient-controlled analgesia is an effective and safe method for immediate postoperative pain control in live liver donors. Liver Transpl. 2009;15(4):381–9.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Niraj G, Kelkar A, Jeyapalan I, et al. Comparison of analgesic efficacy of subcostal transversus abdominis plane blocks with epidural analgesia following upper abdominal surgery. Anaesthesia. 2011;66(6):465–71.CrossRefPubMedGoogle Scholar
  101. 101.
    Hebbard P. Subcostal transversus abdominis plane block under ultrasound guidance. Anesth Analg. 2008;106(2):674–5; author reply 675.CrossRefPubMedGoogle Scholar
  102. 102.
    Hebbard PD, Barrington MJ, Vasey C. Ultrasound-guided continuous oblique subcostal transversus abdominis plane blockade: description of anatomy and clinical technique. Reg Anesth Pain Med. 2010;35(5):436–41.CrossRefPubMedGoogle Scholar
  103. 103.
    Lee TH, Barrington MJ, Tran TM, Wong D, Hebbard PD. Comparison of extent of sensory block following posterior and subcostal approaches to ultrasound-guided transversus abdominis plane block. Anaesth Intensive Care. 2010;38(3):452–60.PubMedGoogle Scholar
  104. 104.
    Kim TW, Harbott M. The use of caudal morphine for pediatric liver transplantation. Anesth Analg. 2004;99(2):373–4; table of contents.CrossRefPubMedGoogle Scholar
  105. 105.
    Howard RF. Current status of pain management in children. JAMA. 2003;290(18):2464–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Sharek PJ, Wayman K, Lin E, Strichartz D, Sentivany-Collins S, Good J, et al. Improved pain management in pediatric postoperative liver transplant patients using parental education and non-pharmacologic interventions. Pediatr Transplant. 2006;10(2):172–7.CrossRefPubMedGoogle Scholar
  107. 107.
    Belle SH, Porayko MK, Hoofnagle JH, Lake JR, Zetterman RK. Changes in quality of life after liver transplantation among adults. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Liver Transplantation Database (LTD). Liver Transpl Surg. 1997;3(2):93–104.CrossRefPubMedGoogle Scholar
  108. 108.
    Haanpaa ML, Gourlay GK, Kent JL, Miaskowski C, Raja SN, Schmader KE, et al. Treatment considerations for patients with neuropathic pain and other medical comorbidities. Mayo Clin Proc. 2010;85(3 Suppl):S15–25.PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Jensen TS, Madsen CS, Finnerup NB. Pharmacology and treatment of neuropathic pains. Curr Opin Neurol. 2009;22(5):467–74.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations