Advertisement

Routine Postoperative Care After Liver Transplantation

  • Jonathan Hastie
  • Vivek K. Moitra
Chapter

Introduction

Routine care immediately after liver transplantation includes in most cases and institutions admission to the intensive care unit (ICU) for monitoring of organ systems, initiation of immunosuppression, evaluation of graft function and management of perioperative physiological changes, including coagulopathy and hemodynamic effects (Fig. 31.1). Although some institutions may bypass the ICU for select patients, most centers admit all liver transplant recipients to the intensive care unit, for even as short a duration as 24 h [ 1, 2]. Preexisting conditions, intraoperative factors and intra- and post-operative complications affect ICU length of stay (Fig. 31.2). Systems processes, such as care bundles, clinical pathways, and enhanced communication tools impact patient outcomes and length of stay [ 3, 4, 5].

Keywords

Electrolytes Hyperglycemia Coagulation Hemodynamic monitoring Ventilation Sedation 

References

  1. 1.
    Ramsay M. Justification for routine intensive care after liver transplantation. Liver Transpl. 2013;19(Suppl 2):S1–5.CrossRefGoogle Scholar
  2. 2.
    Mandell MS, et al. Reduced use of intensive care after liver transplantation: influence of early extubation. Liver Transpl. 2002;8(8):676–81.CrossRefGoogle Scholar
  3. 3.
    Toledo AH, et al. Reducing liver transplant length of stay: a Lean Six Sigma approach. Prog Transplant. 2013;23(4):350–64.CrossRefGoogle Scholar
  4. 4.
    Ely EW, et al. Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med. 1999;159(2):439–46.CrossRefGoogle Scholar
  5. 5.
    McElroy LM, et al. Operating room to intensive care unit handoffs and the risks of patient harm. Surgery. 2015;158(3):588–94.CrossRefGoogle Scholar
  6. 6.
    Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43(2 Suppl 1):S121–31.CrossRefGoogle Scholar
  7. 7.
    Srivastava P, et al. Perioperative management of liver transplantation with concurrent coronary artery disease: report of two cases. Indian J Anaesth. 2013;57(6):599–602.CrossRefGoogle Scholar
  8. 8.
    Paugam-Burtz C, et al. Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors. Liver Transpl. 2009;15(5):522–9.CrossRefGoogle Scholar
  9. 9.
    Daker C, et al. Beneficial effect of intra-operative methylprednisolone on immediate post liver transplant intensive care course. Ann Transplant. 2015;20:76–84.CrossRefGoogle Scholar
  10. 10.
    Zardi EM, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539–49.CrossRefGoogle Scholar
  11. 11.
    Xia VW, et al. Postoperative atrial fibrillation in liver transplantation. Am J Transplant. 2015;15(3):687–94.CrossRefGoogle Scholar
  12. 12.
    Kia L, et al. The utility of pulmonary function testing in predicting outcomes following liver transplantation. Liver Transpl. 2016;22(6):805–11.CrossRefGoogle Scholar
  13. 13.
    Kim WR, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359(10):1018–26.CrossRefGoogle Scholar
  14. 14.
    Hemprich U, Papadakos PJ, Lachmann B. Respiratory failure and hypoxemia in the cirrhotic patient including hepatopulmonary syndrome. Curr Opin Anaesthesiol. 2010;23(2):133–8.CrossRefGoogle Scholar
  15. 15.
    Sahmeddini MA, et al. Restricted crystalloid fluid therapy during orthotopic liver transplant surgery and its effect on respiratory and renal insufficiency in the early post-operative period: a randomized clinical trial. Int J Organ Transplant Med. 2014;5(3):113–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hilmi IA, et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br J Anaesth. 2015;114(6):919–26.CrossRefGoogle Scholar
  17. 17.
    Barri YM, et al. Acute kidney injury following liver transplantation: definition and outcome. Liver Transpl. 2009;15(5):475–83.CrossRefGoogle Scholar
  18. 18.
    Zand MS, et al. High mortality in orthotopic liver transplant recipients who require hemodialysis. Clin Transpl. 2011;25(2):213–21.CrossRefGoogle Scholar
  19. 19.
    Gines P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361(13):1279–90.CrossRefGoogle Scholar
  20. 20.
    O’Riordan A, et al. Acute renal disease, as defined by the RIFLE criteria, post-liver transplantation. Am J Transplant. 2007;7(1):168–76.CrossRefGoogle Scholar
  21. 21.
    Bass NM, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81.CrossRefGoogle Scholar
  22. 22.
    Bernal W, et al. Acute liver failure. Lancet. 2010;376(9736):190–201.CrossRefGoogle Scholar
  23. 23.
    Teperman LW, Peyregne VP. Considerations on the impact of hepatic encephalopathy treatments in the pretransplant setting. Transplantation. 2010;89(7):771–8.CrossRefGoogle Scholar
  24. 24.
    Gines P, Guevara M. Hyponatremia in cirrhosis: pathogenesis, clinical significance, and management. Hepatology. 2008;48(3):1002–10.CrossRefGoogle Scholar
  25. 25.
    Ammori JB, et al. Effect of intraoperative hyperglycemia during liver transplantation. J Surg Res. 2007;140(2):227–33.CrossRefGoogle Scholar
  26. 26.
    Park C, et al. Severe intraoperative hyperglycemia is independently associated with surgical site infection after liver transplantation. Transplantation. 2009;87(7):1031–6.CrossRefGoogle Scholar
  27. 27.
    Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood. 2010;116(6):878–85.CrossRefGoogle Scholar
  28. 28.
    Senzolo M, et al. New insights into the coagulopathy of liver disease and liver transplantation. World J Gastroenterol. 2006;12(48):7725–36.CrossRefGoogle Scholar
  29. 29.
    Dabbagh O, et al. Coagulopathy does not protect against venous thromboembolism in hospitalized patients with chronic liver disease. Chest. 2010;137(5):1145–9.CrossRefGoogle Scholar
  30. 30.
    Dalmau A, Sabate A, Aparicio I. Hemostasis and coagulation monitoring and management during liver transplantation. Curr Opin Organ Transplant. 2009;14(3):286–90.CrossRefGoogle Scholar
  31. 31.
    Apte NM, et al. Gastric colonization and pneumonia in intubated critically ill patients receiving stress ulcer prophylaxis: a randomized, controlled trial. Crit Care Med. 1992;20(5):590–3.CrossRefGoogle Scholar
  32. 32.
    Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137(1):209–20.CrossRefGoogle Scholar
  33. 33.
    Razonable RR, et al. Critical care issues in patients after liver transplantation. Liver Transpl. 2011;17(5):511–27.CrossRefGoogle Scholar
  34. 34.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.CrossRefGoogle Scholar
  35. 35.
    Ramsay MA, et al. Controlled sedation with alphaxalone-alphadolone. Br Med J. 1974;2(5920):656–9.CrossRefGoogle Scholar
  36. 36.
    Sessler CN, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–44.CrossRefGoogle Scholar
  37. 37.
    Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27(7):1325–9.CrossRefGoogle Scholar
  38. 38.
    Hogg LH, et al. Interrater reliability of 2 sedation scales in a medical intensive care unit: a preliminary report. Am J Crit Care. 2001;10(2):79–83.PubMedGoogle Scholar
  39. 39.
    De Jonghe B, et al. Adaptation to the Intensive Care Environment (ATICE): development and validation of a new sedation assessment instrument. Crit Care Med. 2003;31(9):2344–54.CrossRefGoogle Scholar
  40. 40.
    Avripas MB, et al. Development of an intensive care unit bedside sedation scale. Ann Pharmacother. 2001;35(2):262–3.CrossRefGoogle Scholar
  41. 41.
    Riker RR, Fraser GL. Altering intensive care sedation paradigms to improve patient outcomes. Crit Care Clin. 2009;25(3):527–38. viii–ixCrossRefGoogle Scholar
  42. 42.
    Breen D, et al. Decreased duration of mechanical ventilation when comparing analgesia-based sedation using remifentanil with standard hypnotic-based sedation for up to 10 days in intensive care unit patients: a randomised trial [ISRCTN47583497]. Crit Care. 2005;9(3):R200–10.CrossRefGoogle Scholar
  43. 43.
    Dahaba AA, et al. Remifentanil versus morphine analgesia and sedation for mechanically ventilated critically ill patients: a randomized double blind study. Anesthesiology. 2004;101(3):640–6.CrossRefGoogle Scholar
  44. 44.
    Muellejans B, et al. Remifentanil versus fentanyl for analgesia based sedation to provide patient comfort in the intensive care unit: a randomized, double-blind controlled trial [ISRCTN43755713]. Crit Care. 2004;8(1):R1–R11.CrossRefGoogle Scholar
  45. 45.
    Muellejans B, et al. Sedation in the intensive care unit with remifentanil/propofol versus midazolam/fentanyl: a randomised, open-label, pharmacoeconomic trial. Crit Care. 2006;10(3):R91.CrossRefGoogle Scholar
  46. 46.
    Rozendaal FW, et al. Remifentanil-propofol analgo-sedation shortens duration of ventilation and length of ICU stay compared to a conventional regimen: a centre randomised, cross-over, open-label study in the Netherlands. Intensive Care Med. 2009;35(2):291–8.CrossRefGoogle Scholar
  47. 47.
    Hall LG, Oyen LJ, Murray MJ. Analgesic agents. Pharmacology and application in critical care. Crit Care Clin. 2001;17(4):899–923. viiiCrossRefGoogle Scholar
  48. 48.
    Lewis KS, et al. Effect of analgesic treatment on the physiological consequences of acute pain. Am J Hosp Pharm. 1994;51(12):1539–54.PubMedGoogle Scholar
  49. 49.
    Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Crit Care Clin. 2009;25(3):431–49. viiCrossRefGoogle Scholar
  50. 50.
    Kelly DF, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90(6):1042–52.CrossRefGoogle Scholar
  51. 51.
    Pinaud M, et al. Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology. 1990;73(3):404–9.CrossRefGoogle Scholar
  52. 52.
    Hartung HJ. Intracranial pressure in patients with craniocerebral trauma after administration of propofol and thiopental. Anaesthesist. 1987;36(6):285–7.PubMedGoogle Scholar
  53. 53.
    Hutchens MP, Memtsoudis S, Sadovnikoff N. Propofol for sedation in neuro-intensive care. Neurocrit Care. 2006;4(1):54–62.CrossRefGoogle Scholar
  54. 54.
    Bennett SN, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med. 1995;333(3):147–54.CrossRefGoogle Scholar
  55. 55.
    Henry B, Plante-Jenkins C, Ostrowska K. An outbreak of Serratia marcescens associated with the anesthetic agent propofol. Am J Infect Control. 2001;29(5):312–5.CrossRefGoogle Scholar
  56. 56.
    Eddleston JM, Shelly MP. The effect on serum lipid concentrations of a prolonged infusion of propofol—hypertriglyceridaemia associated with propofol administration. Intensive Care Med. 1991;17(7):424–6.CrossRefGoogle Scholar
  57. 57.
    Leisure GS, et al. Propofol and postoperative pancreatitis. Anesthesiology. 1996;84(1):224–7.CrossRefGoogle Scholar
  58. 58.
    Casserly B, et al. Propofol infusion syndrome: an unusual cause of renal failure. Am J Kidney Dis. 2004;44(6):e98–101.CrossRefGoogle Scholar
  59. 59.
    Vasile B, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003;29(9):1417–25.CrossRefGoogle Scholar
  60. 60.
    Venn RM, Hell J, Grounds RM. Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care. Crit Care. 2000;4(5):302–8.CrossRefGoogle Scholar
  61. 61.
    Nelson LE, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.CrossRefGoogle Scholar
  62. 62.
    Shelly MP. Dexmedetomidine: a real innovation or more of the same? Br J Anaesth. 2001;87(5):677–8.CrossRefGoogle Scholar
  63. 63.
    Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Br J Anaesth. 2001;87(5):684–90.CrossRefGoogle Scholar
  64. 64.
    Zafirova Z, O’Connor M. Hepatic encephalopathy: current management strategies and treatment, including management and monitoring of cerebral edema and intracranial hypertension in fulminant hepatic failure. Curr Opin Anaesthesiol. 2010;23(2):121–7.CrossRefGoogle Scholar
  65. 65.
    Finfer S, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  66. 66.
    Cook DJ, et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med. 1994;330(6):377–81.CrossRefGoogle Scholar
  67. 67.
    Vincent JL, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995;274(8):639–44.CrossRefGoogle Scholar
  68. 68.
    Dubberke ER, et al. Clostridium difficile-associated disease in a setting of endemicity: identification of novel risk factors. Clin Infect Dis. 2007;45(12):1543–9.CrossRefGoogle Scholar
  69. 69.
    Herzig SJ, et al. Acid-suppressive medication use and the risk for hospital-acquired pneumonia. JAMA. 2009;301(20):2120–8.CrossRefGoogle Scholar
  70. 70.
    Lisman T, et al. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53(2):362–71.CrossRefGoogle Scholar
  71. 71.
    Warnaar N, Lisman T, Porte RJ. The two tales of coagulation in liver transplantation. Curr Opin Organ Transplant. 2008;13(3):298–303.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology, Cardiothoracic Intensive Care UnitColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Anesthesiology, Surgical Intensive Care Unit and Cardiothoracic Intensive Care UnitColumbia University, College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations