Advertisement

Liver Transplantation for the Patient with High MELD

  • Cynthia Wang
  • Randolph Steadman
Chapter

Introduction

The model for end-stage liver disease (MELD) score has been used for more than 15 years for the allocation of liver grafts in the U.S. and many other countries. As a results liver transplant recipients have been sicker and presented with more severe liver disease. Patients with severe, decompensated liver disease pose a challenge for the anesthesiologist as most organ systems are usually affected. This chapter will review management strategies and common complications of liver transplant recipients with high MELD scores.

The Model for End-Stage Liver Disease (MELD) Score

MELD is a system for scoring the severity of liver disease. The model was developed in 2000 to predict survival in patients undergoing transjugular intrahepatic portosystemic shunt placement. In 2002, the Organ Procurement and Transplantation Network adopted the MELD score as the standard for prioritization of graft allocation for liver transplantation [1, 2, 3]. With few exceptions (hepatocellular...

Keywords

MELD score Renal insufficiency Outcome Transfusion Organ allocation Futility 

References

  1. 1.
    Avolio AW, Nardo B, Agnes S, et al. The mismatch choice in liver transplantation: a suggestion for the selection of the recipient in relation to the characteristics of the donor. Transplant Proc. 2005;37(6):2584–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiesner RH, McDiarmid SV, Kamath PS, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001;7(7):567–80.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Freeman RB, Harper A, Edwards EB. Excellent liver transplant survival rates under the MELD/PELD system. Transplant Proc. 2005;37(2):585–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Saab S, Wang V, Ibrahim AB, et al. MELD score predicts 1-year patient survival post-orthotopic liver transplantation. Liver Transpl. 2003;9(5):473–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Huo TI, Lee SD, Lin HC. Selecting an optimal prognostic system for liver cirrhosis: the model for endstage liver disease and beyond. Liver Int. 2008;28(5):606–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33(2):464–70.CrossRefGoogle Scholar
  8. 8.
    Weinrieb RM, Lucey MR. Treatment of addictive behaviors in liver transplant patients. Liver Transpl. 2007;13(11 Suppl 2):S79–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Kamath PS, Kim WR. The model for end-stage liver disease (MELD). Hepatology. 2007;45(3):797–805.CrossRefGoogle Scholar
  10. 10.
    Huo TI, Lin HC, Lee SD. Model for end-stage liver disease and organ allocation in liver transplantation: where are we and where should we go? J Chin Med Assoc. 2006;69(5):193–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Xia VW, Taniguchi M, Steadman RH. The changing face of patients presenting for liver transplantation. Curr Opin Organ Transplant. 2008;13(3):280–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xia VW, Du B, Braunfeld M, et al. Preoperative characteristics and intraoperative transfusion and vasopressor requirements in patients with low vs. high MELD scores. Liver Transpl. 2006;12(4):614–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Wong LP, Blackley MP, Andreoni KA, et al. Survival of liver transplant candidates with acute renal failure receiving renal replacement therapy. Kidney Int. 2005;68(1):362–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Biancofiore G, Davis CL. Renal dysfunction in the perioperative liver transplant period. Curr Opin Organ Transplant. 2008;13(3):291–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Gines P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361(13):1279–90.CrossRefGoogle Scholar
  16. 16.
    Townsend DR, Bagshaw SM, Jacka MJ, et al. Intraoperative renal support during liver transplantation. Liver Transpl. 2009;15(1):73–8.CrossRefGoogle Scholar
  17. 17.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.CrossRefGoogle Scholar
  18. 18.
    Planinsic RM, Lebowitz JJ. Renal failure in end-stage liver disease and liver transplantation. Int Anesthesiol Clin. 2006;44(3):35–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Ozier Y, Klinck JR. Anesthetic management of hepatic transplantation. Curr Opin Anaesthesiol. 2008;21(3):391–400.CrossRefGoogle Scholar
  20. 20.
    Xia VW, Ghobrial RM, Du B, et al. Predictors of hyperkalemia in the prereperfusion, early postreperfusion, and late postreperfusion periods during adult liver transplantation. Anesth Analg. 2007;105(3):780–5.CrossRefGoogle Scholar
  21. 21.
    Davies HT, Leslie GD. Intermittent versus continuous renal replacement therapy: a matter of controversy. Intensive Crit Care Nurs. 2008;24(5):269–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Agopian VG, et al. Liver transplantation in recipients receiving renal replacement therapy: outcomes analysis and the role of intraoperative hemodialysis. Am J Transplant. 2014;14(7):1638–47.CrossRefGoogle Scholar
  23. 23.
    Chava SP, Singh B, Zaman MB, et al. Current indications for combined liver and kidney transplantation in adults. Transplant Rev (Orlando). 2009;23(2):111–9.CrossRefGoogle Scholar
  24. 24.
    Jeyarajah DR, McBride M, Klintmalm GB, et al. Combined liver-kidney transplantation: what are the indications? Transplantation. 1997;64(8):1091–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Donaldson MD, Seaman MJ, Park GR. Massive blood transfusion. Br J Anaesth. 1992;69(6):621–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Ozier Y, Albi A. Liver transplant surgery and transfusion. Int Anesthesiol Clin. 2004;42(3):147–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Wojciechowski PJ, Samol N, Walker J. Coagulopathy in massive transfusion. Int Anesthesiol Clin. 2005;43(4):1–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Massicotte L, Sassine MP, Lenis S, et al. Transfusion predictors in liver transplant. Anesth Analg. 2004;98(5):1245–51; table of contents.CrossRefPubMedGoogle Scholar
  29. 29.
    McCluskey SA, Karkouti K, Wijeysundera DN, et al. Derivation of a risk index for the prediction of massive blood transfusion in liver transplantation. Liver Transpl. 2006;12(11):1584–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Planinsic RM, van der Meer J, Testa G, et al. Safety and efficacy of a single bolus administration of recombinant factor VIIa in liver transplantation due to chronic liver disease. Liver Transpl. 2005;11(8):895–900.CrossRefGoogle Scholar
  31. 31.
    Lodge JP, Jonas S, Jones RM, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11(8):973–9.CrossRefGoogle Scholar
  32. 32.
    Niemann CU, Behrends M, Quan D, et al. Recombinant factor VIIa reduces transfusion requirements in liver transplant patients with high MELD scores. Transfus Med. 2006;16(2):93–100.CrossRefGoogle Scholar
  33. 33.
    Boin IF, Leonardi MI, Luzo AC, et al. Intraoperative massive transfusion decreases survival after liver transplantation. Transplant Proc. 2008;40(3):789–91.CrossRefGoogle Scholar
  34. 34.
    Warnaar N, Lisman T, Porte RJ. The two tales of coagulation in liver transplantation. Curr Opin Organ Transplant. 2008;13(3):298–303.CrossRefGoogle Scholar
  35. 35.
    Spaggiari M, Di Benedetto F, Masetti M, et al. The impact of inherited thrombophilia on liver transplantation. Transplantation. 2009;87(7):1103–4.CrossRefGoogle Scholar
  36. 36.
    Bustelos R, Ayala R, Martinez J, et al. Living donor liver transplantation: usefulness of hemostatic and prothrombotic screening in potential donors. Transplant Proc. 2009;41(9):3791–5.CrossRefGoogle Scholar
  37. 37.
    Gorlinger K, et al. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39(2):104–13.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schochl H e a. Trauma bleeding management: the concept of goal-directed primary care. Anesth Analg. 2014;119(5):1064–73.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Grottke O. Coagulation management. Curr Opin Crit Care. 2012;18(6):641–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kircher C, et al. Coagulation management with factor concentrates in liver transplantation: a single-center experience. Transfusion. 2014;54(10):2760–8.CrossRefGoogle Scholar
  41. 41.
    Lisman T, et al. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53:362–71.CrossRefGoogle Scholar
  42. 42.
    Mallett SV. Clinical utility of viscoelastic tests of coagulation (TEG/ROTEM) in patients with liver disease and during liver transplantation. Semin Thromb Hemost. 2015;41(5):527–37.CrossRefPubMedGoogle Scholar
  43. 43.
    Stravitz RT. Potential applications of thromboelastography in patients with acute and chronic liver disease. Gastroenterol Hepatol. 2012;8(8):513–20.Google Scholar
  44. 44.
    Spalding GJ, et al. Cost reduction of perioperative coagulation management in cardiac surgery: value of ‘bedside’ thrombelastography (ROTEM). Eur J Cardiothorac Surg. 2007;31:1052–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Liang TB, Li JJ, Li DL, et al. Intraoperative blood salvage and leukocyte depletion during liver transplantation with bacterial contamination. Clin Transpl. 2010;24(2):265–72.CrossRefGoogle Scholar
  46. 46.
    Massicotte L, et al. Effects of phlebotomy and phenylephrine infusion on portal venous pressure and systemic hemodynamics during liver transplantation. Transplantation. 2010;89(8):920–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Panzera P, Cicco G, Memeo R, et al. MELD predictive value of alterations of brain perfusion during liver transplantation. Transplant Proc. 2005;37(6):2622–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kanwal F, Chen D, Ting L, et al. A model to predict the development of mental status changes of unclear cause after liver transplantation. Liver Transpl. 2003;9(12):1312–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Cameron AM, Ghobrial RM, Yersiz H, et al. Optimal utilization of donor grafts with extended criteria: a single-center experience in over 1000 liver transplants. Ann Surg. 2006;243(6):748–53. discussion 753–5.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gastaca M. Extended criteria donors in liver transplantation: adapting donor quality and recipient. Transplant Proc. 2009;41(3):975–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Renz JF, Kin C, Kinkhabwala M, et al. Utilization of extended donor criteria liver allografts maximizes donor use and patient access to liver transplantation. Ann Surg. 2005;242(4):556–63. discussion 563–5.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pine JK, Aldouri A, Young AL, et al. Liver transplantation following donation after cardiac death: an analysis using matched pairs. Liver Transpl. 2009;15(9):1072–82.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    de Vera ME, Lopez-Solis R, Dvorchik I, et al. Liver transplantation using donation after cardiac death donors: long-term follow-up from a single center. Am J Transplant. 2009;9(4):773–81.CrossRefGoogle Scholar
  54. 54.
    Mateo R, Cho Y, Singh G, et al. Risk factors for graft survival after liver transplantation from donation after cardiac death donors: an analysis of OPTN/UNOS data. Am J Transplant. 2006;6(4):791–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Reich DJ, Mulligan DC, Abt PL, et al. ASTS recommended practice guidelines for controlled donation after cardiac death organ procurement and transplantation. Am J Transplant. 2009;9(9):2004–11.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grewal HP, Willingham DL, Nguyen J, et al. Liver transplantation using controlled donation after cardiac death donors: an analysis of a large single-center experience. Liver Transpl. 2009;15(9):1028–35.CrossRefGoogle Scholar
  57. 57.
    Foley DP, Fernandez LA, Leverson G, et al. Donation after cardiac death: the University of Wisconsin experience with liver transplantation. Ann Surg. 2005;242(5):724–31.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Avolio AW, Siciliano M, Barbarino R, et al. Donor risk index and organ patient index as predictors of graft survival after liver transplantation. Transplant Proc. 2008;40(6):1899–902.CrossRefPubMedGoogle Scholar
  59. 59.
    Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant. 2006;6(4):783–90.CrossRefGoogle Scholar
  60. 60.
    Merion RM, Schaubel DE, Dykstra DM, et al. The survival benefit of liver transplantation. Am J Transplant. 2005;5(2):307–13.CrossRefPubMedGoogle Scholar
  61. 61.
    Schaubel DE, Sima CS, Goodrich NP, et al. The survival benefit of deceased donor liver transplantation as a function of candidate disease severity and donor quality. Am J Transplant. 2008;8(2):419–25.CrossRefPubMedGoogle Scholar
  62. 62.
    Hayashi PH, Forman L, Steinberg T, et al. Model for end-stage liver disease score does not predict patient or graft survival in living donor liver transplant recipients. Liver Transpl. 2003;9(7):737–40.CrossRefPubMedGoogle Scholar
  63. 63.
    Akyildiz M, Karasu Z, Arikan C, et al. Impact of pretransplant MELD score on posttransplant outcome in living donor liver transplantation. Transplant Proc. 2004;36(5):1442–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Marubashi S, Dono K, Asaoka T, et al. Risk factors for graft dysfunction after adult-to-adult living donor liver transplantation. Transplant Proc. 2006;38(5):1407–10.CrossRefPubMedGoogle Scholar
  65. 65.
    Selzner M, Kash fi A, Cattral MS, et al. Live donor liver transplantation in high MELD score recipients. Ann Surg. 2010;251(1):153–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Sharma P, et al. End-stage liver disease candidates at the highest MELD scores have higher wait-list mortality than status-1A candidates. Hepatology. 2012 Jan;55(1):192–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Washburn K, et al. Liver allocation and distribution: possible next steps. Liver Transpl. 2011;17:1005–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Massie AB, et al. Early changes in liver distribution following implementation of Share 35. Am J Transplant. 2015;15:659–67.CrossRefPubMedGoogle Scholar
  69. 69.
    Feng S, al e. Share 35: a liver in time saves lives? Am J Transplant. 2015;15:581–2.CrossRefPubMedGoogle Scholar
  70. 70.
    Nekrasov V, et al. National outcomes of liver transplantation for Model for End-stage Liver Disease score ≥40: the impact of Share 35. Am J Transplant. 2016;16:2912–24.CrossRefPubMedGoogle Scholar
  71. 71.
    Petrowsky H, et al. Liver transplantation in highest acuity recipients: identifying factors to avoid futility. Ann Surg. 2014;259:1186–94.CrossRefPubMedGoogle Scholar
  72. 72.
    Panchal HJ, et al. Survival outcomes in liver transplant recipients with Model for End-stage Liver Disease scores of 40 or higher: a decade-long experience. HPB. 2015;17:1074–84.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology and Pain ManagementVA North Texas Healthcare SystemDallasUSA
  2. 2.Department of Anesthesiology and Perioperative MedicineUCLA HealthLos AngelesUSA

Personalised recommendations