Advertisement

Intraoperative Monitoring

  • Claus G. Krenn
  • Marko Nicolic
Chapter

Introduction

Liver transplantation (LTx) has made great strides over the last decades and evolved towards a well-established procedure offered in hundreds of transplant programs in more than 80 countries worldwide. Despite this impressive progress, challenges in liver transplantation have only shifted and transplantation still remain costly and resource-intensive [1, 2, 3, 4, 5].

The decreasing number of contraindications to liver transplantation (resulting in more co-morbidities) and use of marginal grafts require optimal monitoring of perioperative therapy [3, 4, 5]. Early recognition of homeostatic disturbances and their timely treatment may improve outcome and decrease perioperative mortality.

Liver failure affects all organ systems and induces hemodynamic, hematological, metabolic and other homeostatic abnormalities; successful management of patients undergoing liver transplantation requires comprehensive monitoring of all these systems [6].

Only few recommendations on best...

Keywords

Pulmonary artery catheter Pulse pressure variation Neurological monitoring Hemodynamic monitoring Cardiac output Transesophageal echocardiography 

References

  1. 1.
    Perera MT, Mirza DF, Elias E. Liver transplantation: issues for the next 20 years. J Gastroenterol Hepatol. 2009;24(Suppl 3):S124–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Walia A, Schumann R. The evolution of liver transplantation practices. Curr Opin Organ Transplant. 2008;13(3):275–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol. 2013;10:434–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones PD, Hayashi PH, Sidney Barrit A IV. Liver transplantation in 2013: challenges and controversies. Minerva Gastroenterol Dietol. 2013;59(2):117–31.PubMedGoogle Scholar
  5. 5.
    Shukla A, et al. Liver transplantation: east versus west. J Clin Exp Hepatol. 2013;3:243–53.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Stravitz RT, et al. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med. 2007;35(11):2498–508.CrossRefPubMedGoogle Scholar
  7. 7.
    Schumann R. Intraoperative resource utilization in anesthesia for liver transplantation in the United States: a survey. Anesth Analg. 2003;97(1):21–8; table of contentsCrossRefPubMedGoogle Scholar
  8. 8.
    Manley JL, et al. Controversies in anesthetic management of liver transplantation. HPB (Oxford). 2005;7(3):183–5.CrossRefGoogle Scholar
  9. 9.
    Morris-Stiff G, Gomez D, Prasad R. Quantitative assessment of hepatic function and its relevance to the liver surgeon. J Gastrointest Surg. 2009;13(2):374–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Rando K, et al. Optimizing cost-effectiveness in perioperative care for liver transplantation: a model for low- to medium-income countries. Liver Transpl. 2011;17(11):1247–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Ozhathil DK, et al. Impact on center volume on outcomes of increased-risk liver transplants. Liver Transpl. 2011;17(10):1191–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Hall TH, Dhir A. Anesthesia for liver transplantation. Semin Cardiothorac Vasc Anesth. 2013;17(3):180–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Giusto M, et al. Changes in nutritional status after liver transplantation. World J Gastroenterol. 2014;20(31):10682–90.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kosola S, et al. Cholesterol metabolism altered and FGF21 levels high after pediatric liver transplantation despite normal serum lipids. Am J Transplant. 2012;12(10):2815–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Doycheva I, Leise MD, Watt KD. The intestinal microbiome and the liver transplant recipient: what we know and what we need to know. Transplantation. 2016;100(1):61–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Laryea M, et al. Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transpl. 2007;13(8):1109–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Ammori JB, et al. Effect of intraoperative hyperglycemia during liver transplantation. J Surg Res. 2007;140(2):227–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Park C, et al. Severe intraoperative hyperglycemia is independently associated with surgical site infection after liver transplantation. Transplantation. 2009;87(7):1031–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Park CS. Predictive roles of intraoperative blood glucose for post-transplant outcomes in liver transplantation. World J Gastroenterol. 2015;21(22):6835–41.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Gedik E, et al. Blood glucose regulation during living-donor liver transplant surgery. Exp Clin Transplant. 2015;13(Suppl 1):294–300.CrossRefPubMedGoogle Scholar
  21. 21.
    Gillispie A, et al. Effect of extended cold ischemia time on glucose metabolism in liver grafts: experimental study in pigs. J Hepato-Biliary-Pancreat Surg. 2007;14(2):183–8.CrossRefGoogle Scholar
  22. 22.
    Nowak G, et al. Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl. 2002;8(5):424–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Tsinari KK, et al. Factors affecting metabolic and electrolyte changes after reperfusion in liver transplantation. Transplant Proc. 2004;36(10):3051–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Haugaa H, et al. Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transpl. 2012;18(7):839–49.CrossRefPubMedGoogle Scholar
  25. 25.
    Pischke SE, et al. Hepatic and abdominal carbon dioxide measurements detect and distinguish hepatic artery occlusion and portal vein occlusion in pigs. Liver Transpl. 2012;18(12):1485–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Haugaa H, et al. Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl. 2013;19(3):305–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Bernal W, et al. Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study. Lancet. 2002;359(9306):558–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Waelgaard L, et al. Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation. 2008;86(8):1096–103.CrossRefPubMedGoogle Scholar
  29. 29.
    Shah AD, Wood DM, Dargan PI. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning. Br J Clin Pharmacol. 2011;71(1):20–8.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Murphy ND, et al. Liver and intestinal lactate metabolism in patients with acute hepatic failure undergoing liver transplantation. Crit Care Med. 2001;29(11):2111–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Silva MA, et al. Interstitial lactic acidosis in the graft during organ harvest, cold storage, and reperfusion of human liver allografts predicts subsequent ischemia reperfusion injury. Transplantation. 2006;82(2):227–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Walker V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes Metab. 2009;11(9):823–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Cordoba J, Minguez B. Hepatic encephalopathy. Semin Liver Dis. 2008;28(1):70–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Belanger M, et al. Mild hypothermia prevents brain edema and attenuates up-regulation of the astrocytic benzodiazepine receptor in experimental acute liver failure. J Hepatol. 2005;42(5):694–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Raghavan M, Marik PE. Therapy of intracranial hypertension in patients with fulminant hepatic failure. Neurocrit Care. 2006;4(2):179–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Ong JP, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114(3):188–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Butterworth RF. Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res. 2008;38(s1The 6 Japan Society of Hepatology Single Topic Conference: Liver Failure: Recent Progress and Pathogenesis to Management. 28-29 September 2007, Iwate, Japan):S116–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Sawhney R, et al. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl. 2016;22(6):732–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Serkova NJ, et al. Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation. 2007;83(4):517–21.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Hrydziuszko O, et al. Application of metabolomics to investigate the process of human orthotopic liver transplantation: a proof-of-principle study. OMICS. 2010;14(2):143–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Cimen S, et al. Implications of hyponatremia in liver transplantation. J Clin Med. 2015;4(1):66–74.CrossRefGoogle Scholar
  42. 42.
    Mandell MS, et al. Risk factors associated with acute heart failure during liver transplant surgery: a case control study. Transplantation. 2015;99(4):873–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Xia VW, et al. Predictors of hyperkalemia in the prereperfusion, early postreperfusion, and late postreperfusion periods during adult liver transplantation. Anesth Analg. 2007;105(3):780–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Yun BC, Kim WR. Hyponatremia in hepatic encephalopathy: an accomplice or innocent bystander? Am J Gastroenterol. 2009;104(6):1390–1.CrossRefPubMedGoogle Scholar
  45. 45.
    de Morais BS, et al. Central pontine myelinolysis after liver transplantation: is sodium the only villain? Case report. Rev Bras Anestesiol. 2009;59(3):344–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Biggins SW, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology. 2006;130(6):1652–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Luca A, et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl. 2007;13(8):1174–80.CrossRefPubMedGoogle Scholar
  48. 48.
    Nadeem A, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care. 2014;18(6):625–34.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Boon AP, et al. Central pontine myelinolysis in liver transplantation. J Clin Pathol. 1991;44(11):909–14.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Lee EM, et al. Risk factors for central pontine and extrapontine myelinolysis following orthotopic liver transplantation. Eur Neurol. 2009;62(6):362–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh N, Yu VL, Gayowski T. Central nervous system lesions in adult liver transplant recipients: clinical review with implications for management. Medicine (Baltimore). 1994;73(2):110–8.CrossRefGoogle Scholar
  52. 52.
    Wszolek ZK, et al. Pontine and extrapontine myelinolysis following liver transplantation. Relationship to serum sodium. Transplantation. 1989;48(6):1006–12.CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar S, et al. Central pontine myelinolysis, an update. Neurol Res. 2006;28(3):360–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Choi JH, Lee J, Park CM. Magnesium therapy improves thromboelastographic findings before liver transplantation: a preliminary study. Can J Anaesth. 2005;52(2):156–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Yuan D, et al. Hepatectomy-related hypophosphatemia may predict donor liver dysfunction in live-donor liver transplantation. Transplant Proc. 2010;42(10):4548–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Filik L, et al. Hypophosphatemia in living liver donors. Transplant Proc. 2006;38(2):559–61.CrossRefPubMedGoogle Scholar
  57. 57.
    Nadim MK. Intraoperative hemodialysis during liver transplantation: a decade of experience. Liver Transpl. 2014;20(7):756–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Han SB, et al. Risk factors for inadvertent hypothermia during adult living-donor liver transplantation. Transplant Proc. 2014;46(3):705–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Leake I. Out in the cold: new supercooling technique extends liver storage time. Nat Rev Gastroenterol Hepatol. 2014;11(9):517.CrossRefPubMedGoogle Scholar
  60. 60.
    D’Amico DF, et al. Thermal homeostasis and liver transplantation. Acta Biomed. 2003;74(Suppl 2):30–3.PubMedGoogle Scholar
  61. 61.
    Madrid E, et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst Rev. 2016;4:CD009016.PubMedGoogle Scholar
  62. 62.
    Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol. 2005;43(6):1067–77.CrossRefPubMedGoogle Scholar
  63. 63.
    Olthof PB, et al. Protective mechanisms of hypothermia in liver surgery and transplantation. Mol Med. 2015;21:833–46.PubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hartmann M, Szalai C, Saner FH. Hemostasis in liver transplantation: pathophysiology, monitoring, and treatment. World J Gastroenterol. 2016;22(4):1541–50.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Nacoti M, et al. Coagulopathy and transfusion therapy in pediatric liver transplantation. World J Gastroenterol. 2016;22(6):2005–23.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Trzebicki J, et al. The use of thromboelastometry in the assessment of hemostasis during orthotopic liver transplantation reduces the demand for blood products. Ann Transplant. 2010;15(3):19–24.PubMedGoogle Scholar
  67. 67.
    Detry O, et al. Avoiding blood products during liver transplantation. Transplant Proc. 2005;37(6):2869–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Dalmau A, Sabate A, Aparicio I. Hemostasis and coagulation monitoring and management during liver transplantation. Curr Opin Organ Transplant. 2009;14(3):286–90.CrossRefPubMedGoogle Scholar
  69. 69.
    Lisman T, Ariens RA. Alterations in fibrine structure in patients with liver diseases. Semin Thromb Hemost. 2016;42(4):389–96.CrossRefPubMedGoogle Scholar
  70. 70.
    Roullet S, et al. Rotation thromboelastometry detects thrombocytopenia and hypofibrinogenaemia during orthotopic liver transplantation. Br J Anaesth. 2010;104(4):422–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Coakley M, et al. Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth. 2006;20(4):548–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Herbstreit F, et al. Monitoring of haemostasis in liver transplantation: comparison of laboratory based and point of care tests. Anaesthesia. 2010;65(1):44–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Leon-Justel A, et al. Point-of-care haemostasis monitoring during liver transplantation reduces transfusion requirements and improves patient outcome. Clin Chim Acta. 2015;446:277–83.CrossRefPubMedGoogle Scholar
  74. 74.
    Huang PH, et al. Accuracy and trending of continuous noninvasive hemoglobin monitoring in patients undergoing liver transplantation. Transplant Proc. 2016;48(4):1067–70.CrossRefPubMedGoogle Scholar
  75. 75.
    Lisman T, et al. Recombinant factor VIIa improves clot formation but not fibrolytic potential in patients with cirrhosis and during liver transplantation. Hepatology. 2002;35(3):616–21.CrossRefPubMedGoogle Scholar
  76. 76.
    Lodge JP, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11(8):973–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Jalan R, et al. Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol. 2004;41(4):613–20.CrossRefPubMedGoogle Scholar
  78. 78.
    Clemmesen JO, et al. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29(3):648–53.CrossRefPubMedGoogle Scholar
  79. 79.
    Philips BJ, et al. Cerebral blood flow and metabolism in patients with chronic liver disease undergoing orthotopic liver transplantation. Hepatology. 1998;27(2):369–76.CrossRefPubMedGoogle Scholar
  80. 80.
    Steadman RH, Van Rensburg A, Kramer DJ. Transplantation for acute liver failure: perioperative management. Curr Opin Organ Transplant. 2010;15(3):368–73.CrossRefPubMedGoogle Scholar
  81. 81.
    Mohsenin V. Assessment and management of cerebral edema and intracranial hypertension in acute liver failure. J Crit Care. 2013;28(5):783–91.CrossRefPubMedGoogle Scholar
  82. 82.
    Ferro JM, Viana P, Santos P. Management of neurologic manifestations in patients with liver disease. Curr Treat Options Neurol. 2016;18:37–53.CrossRefPubMedGoogle Scholar
  83. 83.
    Reeves RR, Struve FA, Burke RS. Quantitative EEG analysis before and after liver transplantation. Clin EEG Neurosci. 2006;37(1):34–40.CrossRefPubMedGoogle Scholar
  84. 84.
    Reeves RR, et al. P300 cognitive evoked potentials before and after liver transplantation. Metab Brain Dis. 2007;22(2):139–44.CrossRefPubMedGoogle Scholar
  85. 85.
    Hussain E, et al. EEG abnormalities are associated with increased risk of transplant or poor outcome in children with acute liver failure. J Pediatr Gastroenterol Nutr. 2014;58(4):449–56.CrossRefPubMedGoogle Scholar
  86. 86.
    Hwang S. Continuous peritransplant assessment of consciousness using bispectral index monitoring for patients with fulminant hepatic failure undergoing urgent liver transplantation. Clin Transpl. 2010;24(1):91–7.CrossRefGoogle Scholar
  87. 87.
    Dahaba AA, et al. The utility of using bispectral index monitoring as an early intraoperative indicator of initial poor graft function after orthotopic or split-graft liver transplantation. Gut. 2009;58(4):605–6.CrossRefPubMedGoogle Scholar
  88. 88.
    Dahaba AA, et al. Sensitivity and specificity of bispectral index for classification of overt hepatic encephalopathy: a multicentre, observer blinded, validation study. Gut. 2008;57(1):77–83.CrossRefPubMedGoogle Scholar
  89. 89.
    Vivien B, et al. Detection of brain death onset using the bispectral index in severely comatose patients. Intensive Care Med. 2002;28(4):419–25.CrossRefPubMedGoogle Scholar
  90. 90.
    Kang JG, et al. The relationship between inhalational anesthetic requirements and the severity of liver disease in liver transplant recipients according to three phases of liver transplantation. Transplant Proc. 2010;42(3):854–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Montagnese S, et al. Prognostic benefit of the addition of a quantitative index of hepatic encephalopathy to the MELD score: the MELD-EEG. Liver Int. 2015;35(1):58–64.CrossRefPubMedGoogle Scholar
  92. 92.
    Nissen P, et al. Near-infrared spectroscopy for evaluation of cerebral autoregulation during orthotopic liver transplantation. Neurocrit Care. 2009;11(2):235–41.CrossRefPubMedGoogle Scholar
  93. 93.
    Madsen PL, et al. Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg. 2000;90(2):489–93.PubMedGoogle Scholar
  94. 94.
    Sidi A, Mahla ME. Noninvasive monitoring of cerebral perfusion by transcranial Doppler during fulminant hepatic failure and liver transplantation. Anesth Analg. 1995;80(1):194–200.PubMedGoogle Scholar
  95. 95.
    Bindi ML, et al. Transcranial doppler sonography is useful for the decision-making at the point of care in patients with acute hepatic failure: a single centre’s experience. J Clin Monit Comput. 2008;22(6):449–52.CrossRefPubMedGoogle Scholar
  96. 96.
    Zheng Y, et al. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation. Neurocrit Care. 2012;17(1):77–84.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Aggarwal S, et al. Cerebral hemodynamic and metabolic profiles in fulminant hepatic failure: relationship to outcome. Liver Transpl. 2005;11(11):1353–60.CrossRefPubMedGoogle Scholar
  98. 98.
    Blei AT, et al. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341(8838):157–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Le TV, et al. Insertion of intracranial pressure monitors in fulminant hepatic failure patients: early experience using recombinant factor VII. Neurosurgery. 2010;66(3):455–8. discussion 458CrossRefPubMedGoogle Scholar
  100. 100.
    Bacani CJ, et al. Emergent, controlled lumbar drainage for intracranial pressure monitoring during orthotopic liver transplantation. Neurocrit Care. 2011;14(3):447–52.CrossRefPubMedGoogle Scholar
  101. 101.
    Martinez-Manas RM, et al. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Munoz SJ, Rajender Reddy K, Lee W. The coagulopathy of acute liver failure and implications for intracranial pressure monitoring. Neurocrit Care. 2008;9(1):103–7.CrossRefPubMedGoogle Scholar
  103. 103.
    Karvellas CJ, et al. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med. 2014;42(5):1157–67.PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Alonso J, Cordoba J, Rovira A. Brain magnetic resonance in hepatic encephalopathy. Semin Ultrasound CT MR. 2014;35(2):136–52.CrossRefPubMedGoogle Scholar
  105. 105.
    Yan S, et al. Clinical utility of an automated pupillometer for assessing and monitoring recipients of liver transplantation. Liver Transpl. 2009;15(12):1718–27.CrossRefPubMedGoogle Scholar
  106. 106.
    Moller S, Dumcke CW, Krag A. The heart and the liver. Expert Rev Gastroenterol Hepatol. 2009;3(1):51–64.CrossRefPubMedGoogle Scholar
  107. 107.
    Ripoli C, Yotti R, Banares R. The heart in liver transplantation. J Hepatol. 2011;54:810–22.CrossRefGoogle Scholar
  108. 108.
    Raval Z, et al. Cardiac risk assessment of liver transplant candidate. J Am Coll Cardiol. 2011;58:223–31.CrossRefPubMedGoogle Scholar
  109. 109.
    Della Rocca G, et al. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J Cardiothorac Vasc Anesth. 2008;22(5):681–7.CrossRefPubMedGoogle Scholar
  110. 110.
    Carey WD, et al. The prevalence of coronary artery disease in liver transplant candidates over age 50. Transplantation. 1995;59(6):859–64.CrossRefPubMedGoogle Scholar
  111. 111.
    Zaky A, Bendjelid K. Appraising cardiac dysfunction in liver transplantation: an ongoing challenge. Liver Int. 2015;35(1):12–29.CrossRefPubMedGoogle Scholar
  112. 112.
    Ozier Y, Klinck JR. Anesthetic management of hepatic transplantation. Curr Opin Anaesthesiol. 2008;21(3):391–400.CrossRefPubMedGoogle Scholar
  113. 113.
    Nissen P, Friederiksen HJ, Secher NH. Intraoperative hemodynamic monitoring during liver transplantation: goals and devices. Minerva Gastroenterol Dietol. 2010;56(3):261–77.PubMedGoogle Scholar
  114. 114.
    Rudnick MR, De Marchi L, Plotkin JS. Hemodynamic monitoring during liver transplantation: a state of the art review. World J Hepatol. 2015;7(10):1302–11.PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Ripoll C, et al. Cardiac dysfunction during liver transplantation: incidence and preoperative predictors. Transplantation. 2008;85(12):1766–72.CrossRefPubMedGoogle Scholar
  116. 116.
    Robertson A. Intraoperative management of liver transplantation in patients with hypertrophic cardiomyopathy: a review. Transplant Proc. 2010;42(5):1721–3.CrossRefPubMedGoogle Scholar
  117. 117.
    Aggarwal S, et al. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care. 1993;8(3):154–60. 113CrossRefPubMedGoogle Scholar
  118. 118.
    Aufhauser DD, et al. Cardiac arrest associated with reperfusion of the liver during transplantation: incidence and proposal for management algorithm. Clin Transpl. 2013;27(2):185–92.CrossRefGoogle Scholar
  119. 119.
    Lee M, et al. Agreement between radial to femoral arterial blood pressure measurements during liver transplantation. Crit Care Resusc. 2015;17(2):101–7.PubMedGoogle Scholar
  120. 120.
    Duran JA, et al. Best blood sample draw site during liver transplantation. Transplant Proc. 2009;41(3):991–3.CrossRefPubMedGoogle Scholar
  121. 121.
    Krenn CG, De Wolf AM. Current approach to intraoperative monitoring in liver transplantation. Curr Opin Organ Transplant. 2008;13(3):285–90.CrossRefPubMedGoogle Scholar
  122. 122.
    Arguedas MR, et al. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology. 2003;37(1):192–7.CrossRefPubMedGoogle Scholar
  123. 123.
    Mazzeo AT, et al. Significance of hypoxemia screening in candidates for liver transplantation: our experience. Transplant Proc. 2006;38(3):793–4.CrossRefPubMedGoogle Scholar
  124. 124.
    Cosarderelioglu C, et al. Portopulmonary hypertension and liver transplant: recent review of the literature. Exp Clin Transplant. 2016;14(2):113–20.PubMedGoogle Scholar
  125. 125.
    Kim SH, et al. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119(2):332–46.CrossRefPubMedGoogle Scholar
  126. 126.
    Della Rocca G, et al. Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques. Eur J Anaesthesiol. 2002;19(12):868–75.CrossRefPubMedGoogle Scholar
  127. 127.
    Greim CA, et al. Continuous cardiac output monitoring during adult liver transplantation: thermal filament technique versus bolus thermodilution. Anesth Analg. 1997;85(3):483–8.CrossRefPubMedGoogle Scholar
  128. 128.
    Feltracco P, et al. Limits and pitfalls of hemodynamic monitoring systems in liver transplantation surgery. Minerva Anestesiol. 2012;78(12):1372–84.PubMedGoogle Scholar
  129. 129.
    Costa MG, et al. Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med. 2008;34(2):257–63.CrossRefPubMedGoogle Scholar
  130. 130.
    Ferreira RM, do Amaral JL, Valiatti JL. Comparison between two methods for hemodynamic measurement: thermodilution and oesophageal doppler. Rev Assoc Med Bras. 2007;53(4):349–54.CrossRefPubMedGoogle Scholar
  131. 131.
    Krejci V, et al. Comparison of calibrated and uncalibrated arterial pressure-based cardiac output monitors during orthotopic liver transplantation. Liver Transpl. 2010;16(6):773–82.PubMedGoogle Scholar
  132. 132.
    Gwak MS, et al. Incidence of severe ventricular arrhythmias during pulmonary artery catheterization in liver allograft recipients. Liver Transpl. 2007;13(10):1451–4.CrossRefPubMedGoogle Scholar
  133. 133.
    Bao FP, Wu J. Continuous versus bolus cardiac output monitoring during orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int. 2008;7(2):138–44.PubMedGoogle Scholar
  134. 134.
    Kim YK, et al. Comparison of stroke volume variations derived from radial and femoral arterial pressure waveforms during liver transplantation. Transplant Proc. 2009;41(10):4220–8.CrossRefPubMedGoogle Scholar
  135. 135.
    Lee M, et al. Agreement in hemodynamic monitoring during orthotopic liver transplantation: a comparison of FloTrac/Vigileo and two monitoring sites with pulmonary artery catheter thermodilution. J Clin Monit Comput. 2017;31(2):343–51.CrossRefPubMedGoogle Scholar
  136. 136.
    Schlögelhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anesth. 2014;61:452–79.CrossRefGoogle Scholar
  137. 137.
    Hoftman N, et al. Peripheral venous pressure as a predictor of central venous pressure during orthotopic liver transplantation. J Clin Anesth. 2006;18(4):251–5.CrossRefPubMedGoogle Scholar
  138. 138.
    De Wolf AM, et al. Right ventricular function during orthotopic liver transplantation. Anesth Analg. 1993;76(3):562–8.PubMedGoogle Scholar
  139. 139.
    Siniscalchi A, et al. Right ventricular end-diastolic volume index as a predictor of preload status in patients with low right ventricular ejection fraction during orthotopic liver transplantation. Transplant Proc. 2005;37(6):2541–3.CrossRefPubMedGoogle Scholar
  140. 140.
    Krenn CG, et al. Intrathoracic fluid volumes and pulmonary function during orthotopic liver transplantation. Transplantation. 2000;69(11):2394–400.CrossRefPubMedGoogle Scholar
  141. 141.
    Fazakas J, et al. Volumetric hemodynamic changes and postoperative complications in liver transplant patients. Transplant Proc. 2011;43(4):1275–7.CrossRefPubMedGoogle Scholar
  142. 142.
    Della Rocca G, Brondani A, Costa MG. Intraoperative hemodynamic monitoring during organ transplantation: what is new? Curr Opin Organ Transplant. 2009;14(3):29–38.CrossRefGoogle Scholar
  143. 143.
    Starkel P, et al. Outcome of liver transplantation for patients with pulmonary hypertension. Liver Transpl. 2002;8(4):382–8.CrossRefPubMedGoogle Scholar
  144. 144.
    Tam NL, He XS. Clinical management of portopulmonary hypertension. Hepatobiliary Pancreat Dis Int. 2007;6(5):464–9.PubMedGoogle Scholar
  145. 145.
    Acosta F, et al. Does mixed venous oxygen saturation reflect the changes in cardiac output during liver transplantation? Transplant Proc. 2002;34(1):277.CrossRefPubMedGoogle Scholar
  146. 146.
    Jardin F, et al. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72(6):966–70.CrossRefPubMedGoogle Scholar
  147. 147.
    Biais M, et al. Uncalibrated stroke volume variations are able to predict the hemodynamic effects of positive end-expiratory pressure in patients with acute lung injury or acute respiratory distress syndrome after liver transplantation. Anesthesiology. 2009;111(4):855–62.CrossRefPubMedGoogle Scholar
  148. 148.
    Garutti I, et al. Extravascular lung water and pulmonary vascular permeability index measured at the end of surgery are independent predictors of prolonged mechanical ventilation in patients undergoing liver transplantation. Anesth Analg. 2015;121(3):736–45.CrossRefPubMedGoogle Scholar
  149. 149.
    Biais M, et al. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101(6):761–8.CrossRefPubMedGoogle Scholar
  150. 150.
    Konur H, et al. Evaluation of pleth variability index as a predictor of fluid responsiveness during orthotopic liver transplantation. Kaohsiung J Med Sci. 2016;32(7):373–80.CrossRefPubMedGoogle Scholar
  151. 151.
    Burtenshaw AJ, Isaac JL. The role of trans-oesophageal echocardiography for perioperative cardiovascular monitoring during orthotopic liver transplantation. Liver Transpl. 2006;12(11):1577–83.CrossRefPubMedGoogle Scholar
  152. 152.
    Wax DB, et al. Transesophageal echocardiography utilization in high-volume liver transplantation centers in the United States. J Cardiothorac Vasc Anesth. 2008;22(6):811–3.CrossRefPubMedGoogle Scholar
  153. 153.
    Soong W, et al. United States practice patterns in the use of transesophageal echocardiography during adult liver transplantation. J Cardiothorac Vasc Anesth. 2014;28(3):635–9.CrossRefPubMedGoogle Scholar
  154. 154.
    De Wolf A. Transesophageal echocardiography and orthotopic liver transplantation: general concepts. Liver Transpl Surg. 1999;5(4):339–40.CrossRefPubMedGoogle Scholar
  155. 155.
    Burger-Klepp U, et al. Transesophageal echocardiography during orthotopic liver transplantation in patients with esophageal varices. Transplantation. 2012;94(2):192–6.CrossRefPubMedGoogle Scholar
  156. 156.
    Markin NW, et al. The safety of transesophageal echocardiography in patients undergoing orthotopic liver transplantation. J Cardiothorac Vasc Anesth. 2015;29(3):588–93.CrossRefPubMedGoogle Scholar
  157. 157.
    Feierman D. Case presentation: transesophageal echocardiography during orthotopic liver transplantation—not only a different diagnosis, but different management. Liver Transpl Surg. 1999;5(4):340–1.CrossRefPubMedGoogle Scholar
  158. 158.
    Ellenberger C, et al. Cardiovascular collapse due to massive pulmonary thromboembolism during orthotopic liver transplantation. J Clin Anesth. 2006;18(5):367–71.CrossRefPubMedGoogle Scholar
  159. 159.
    Rosendal C, et al. Right ventricular function during orthotopic liver transplantation: three-dimensional transesophageal echocardiography and thermodilution. Ann Transplant. 2012;17(1):21–30.CrossRefPubMedGoogle Scholar
  160. 160.
    Planinsic RM, et al. Diagnosis and treatment of intracardiac thrombosis during orthotopic liver transplantation. Anesth Analg. 2004;99(2):353–6; table of contentsCrossRefPubMedGoogle Scholar
  161. 161.
    Shapiro RS, et al. Use of intraoperative Doppler ultrasound to diagnose hepatic venous obstruction in a right lobe living donor liver transplant. Liver Transpl. 2001;7(6):547–50.CrossRefPubMedGoogle Scholar
  162. 162.
    Puhl G, et al. Initial hepatic microcirculation correlates with early graft function in human orthotopic liver transplantation. Liver Transpl. 2005;11(5):555–63.CrossRefPubMedGoogle Scholar
  163. 163.
    Lisik W, et al. Intraoperative blood flow measurements in organ allografts can predict postoperative function. Transplant Proc. 2007;39(2):371–2.CrossRefPubMedGoogle Scholar
  164. 164.
    Hoekstra LT, et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg. 2013;257(1):27–36.CrossRefPubMedGoogle Scholar
  165. 165.
    Nagel RA, et al. Use of quantitative liver function tests—caffein clearance and galactose elimination capacity—after orthotopic liver transplantation. J Hepatol. 1990;10(2):149–57.CrossRefPubMedGoogle Scholar
  166. 166.
    Ecochard M, et al. Could metabolic liver function tests predict mortality on waiting list for liver transplantation? A study on 560 patients. Clin Transpl. 2011;25(5):755–65.CrossRefGoogle Scholar
  167. 167.
    Dubray BJ, Zarrinpar A. Quantification of hepatic functional capacity: a call for standardisation. Expert Rev Gastroenterol Hepatol. 2016;10(1):9–11.CrossRefGoogle Scholar
  168. 168.
    Bruns H, et al. Early markers of reperfusion injury after liver transplantation: association with primary dysfunction. Hepatobiliary Pancreat Dis Int. 2015;14(3):246–52.CrossRefPubMedGoogle Scholar
  169. 169.
    Garcia-Criado A, et al. Doppler ultrasound findings in the hepatic artery shortly after liver transplantation. Am J Roentgenol. 2009;193(1):128–35.CrossRefGoogle Scholar
  170. 170.
    Feng AC, et al. Hepatic hemodynamic changes during liver transplantation: a review. World J Gastroenterol. 2014;20(32):11131–41.PubMedCentralCrossRefPubMedGoogle Scholar
  171. 171.
    Bueno J, et al. Intraoperative flow measurement of native liver and allograft during orthotopic liver transplantation in children. Transplant Proc. 2007;39(7):2278–9.CrossRefPubMedGoogle Scholar
  172. 172.
    Jamieson LH, et al. Doppler ultrasound velocities and resistive indexes immediately after pediatric transplantation: normal ranges and predictors of failure. Am J Roentgenol. 2014;203(1):W110–6.CrossRefGoogle Scholar
  173. 173.
    Kaneko J, et al. Implantable Doppler probe for continuous monitoring of blood flow after liver transplantation. Hepato-Gastroenterology. 2005;52(61):194–6.PubMedGoogle Scholar
  174. 174.
    Aki TJ, et al. Wireless monitor of liver hemodynamics in vivo. PLoS One. 2014;9(7):e102396.CrossRefGoogle Scholar
  175. 175.
    Schutz W, et al. Is it feasible to monitor total hepatic blood flow by use of transesophageal echography? An experimental study in pigs. Intensive Care Med. 2001;27(3):580–5.CrossRefPubMedGoogle Scholar
  176. 176.
    Kortgen A, et al. Prospective assessment of hepatic function and mechanisms of dysfunction in the critically ill. Shock. 2009;32(4):358–65.CrossRefPubMedGoogle Scholar
  177. 177.
    Chan RW, et al. The potential clinical utility of serial plasma albumin mRNA monitoring for the post-liver transplantation management. Clin Biochem. 2013;46(15):1313–9.CrossRefPubMedGoogle Scholar
  178. 178.
    Schlegel A, Kron P, Dutkowski P. Hypothermic machine perfusion in liver transplantation. Curr Opin Organ Transplant. 2016;21(3):308–14.CrossRefPubMedGoogle Scholar
  179. 179.
    Karangwa SA, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant. 2016;16(10):2932–42.PubMedCentralCrossRefPubMedGoogle Scholar
  180. 180.
    Verhoeven CJ, et al. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol. 2014;61:672–84.CrossRefPubMedGoogle Scholar
  181. 181.
    Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit. 2001;23(2):81–92.CrossRefPubMedGoogle Scholar
  182. 182.
    Levesque E, et al. Plasma disappearance rate of indocyanine green: a tool to evaluate early graft outcome after liver transplantation. Liver Transpl. 2009;15(10):1358–64.CrossRefPubMedGoogle Scholar
  183. 183.
    Kortgen A, et al. Vasoactive mediators in patients with acute liver failure treated with albumin dialysis. Liver Int. 2010;30(4):634–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anaesthesia, General Intensive Care and Pain MedicineMedical University of Vienna, General Hospital ViennaViennaAustria

Personalised recommendations