Skip to main content

Diverse Selection of Feature Subsets for Ensemble Regression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10440))

Abstract

Regression tasks such as forecasting of sensor values play a principal role in industrial applications. For instance, modern automobiles have hundreds of process variables which are used to predict target sensor values. Due to the complexity of these systems, each subset of features often shows different type of correlations with the target. Capturing such local interactions improve the regression models. Nevertheless, several existing feature selection algorithms focus on obtaining a single projection of the features and are not able to exploit the multiple local interactions from different subsets of variables. It is still an open challenge to efficiently select multiple subsets that not only contribute for the prediction quality, but are also diverse, i.e., subsets with complementary information. Such diverse subsets enrich the regression model with novel and essential knowledge by capturing the local interactions using multiple views of a high-dimensional feature space. In this work, we propose a framework to select multiple diverse subsets. First, our approach prunes the feature space by using the properties of multiple correlation measures. The pruned feature space is used to systematically generate new diverse combinations of feature subsets without decrease in the prediction quality. We show that our approach outperforms prevailing approaches on synthetic and several real world datasets from different application domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stock closing prices for 156 companies and 3 indexes from 2000 to 2007 (2011). http://mldata.org/repository/data/viewslug/stockvalues/

  2. Babatunde, O., Armstrong, L., Leng, J., Diepeveen, D.: A genetic algorithm-based feature selection. Br. J. Math. Comput. Sci. 4(21), 889–905 (2014)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Camacho, R.: Delta ailerons (1997). http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

  5. Fei, T., Kraus, D., Zoubir, A.M.: Contributions to automatic target recognition systems for underwater mine classification. IEEE Trans. Geosci. Remote Sens. 53(1), 505–518 (2015)

    Article  Google Scholar 

  6. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  7. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley, New York (2013)

    MATH  Google Scholar 

  8. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)

    Google Scholar 

  9. Kawala, F., Douzal-Chouakria, A., Gaussier, E., Dimert, E.: Prédictions d’activité dans les réseaux sociaux en ligne. In: 4ième conférence sur les modèles et l’analyse des réseaux: Approches mathématiques et informatiques, p. 16 (2013)

    Google Scholar 

  10. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  11. Lázaro Gredilla, M.: Sparse Gaussian processes for large-scale machine learning (2010)

    Google Scholar 

  12. Lewitt, M., Polikar, R.: An ensemble approach for data fusion with learn++. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 176–185. Springer, Heidelberg (2003). doi:10.1007/3-540-44938-8_18

    Chapter  Google Scholar 

  13. Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: a survey and experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002, ICDM 2003, Proceedings, pp. 306–313. IEEE (2002)

    Google Scholar 

  14. NIPS: Workshop on variable and feature selection (2001). http://www.clopinet.com/isabelle/Projects/NIPS2001/

  15. Olson, J.E.: On the symmetric difference of two sets in a group. Eur. J. Combin. 7(1), 43–54 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oza, N.C., Tumer, K., Norwig, P.: Dimensionality reduction through classifier ensembles (1999)

    Google Scholar 

  17. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)

    Article  MATH  Google Scholar 

  18. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  MATH  Google Scholar 

  19. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5212, pp. 313–325. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87481-2_21

    Chapter  Google Scholar 

  20. Sharkawy, R., Ibrahim, K., Salama, M., Bartnikas, R.: Particle swarm optimization feature selection for the classification of conducting particles in transformer oil. IEEE Trans. Dielectr. Electr. Insulation 18(6), 1897–1907 (2011)

    Article  Google Scholar 

  21. Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  22. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tan, P.N.: Introduction to Data Mining. Pearson Education, Noida (2006)

    Google Scholar 

  24. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

    Article  Google Scholar 

  25. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

    Google Scholar 

  26. Zamora-Martínez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Shekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shekar, A.K., Sánchez, P.I., Müller, E. (2017). Diverse Selection of Feature Subsets for Ensemble Regression. In: Bellatreche, L., Chakravarthy, S. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2017. Lecture Notes in Computer Science(), vol 10440. Springer, Cham. https://doi.org/10.1007/978-3-319-64283-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64283-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64282-6

  • Online ISBN: 978-3-319-64283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics