How to Design Adaptive Information Environments to Support Self-Regulated Learning with Multimedia

  • Katharina Scheiter
  • Benjamin Fillisch
  • Marie-Christin Krebs
  • Jasmin Leber
  • Rolf Ploetzner
  • Alexander Renkl
  • Holger Schmidt
  • Anne Schüler
  • Gottfried Zimmermann


Multimedia materials have become an important component of digital information environments. In general, they have been shown to foster student learning; however, many students fail to process the materials in ways that lead to deeper understanding. This can be regarded as a deficit in students’ self-regulation. That is, many students do not adequately monitor their level of understanding and do not apply cognitive processes that would contribute to better learning. Modern educational technology allows supporting learners by designing information environments that—rather than offering a one-size-fits-all support—are adapted to the degree to which students face learning problems. In particular, adaptive learning environments facilitate (continuous) self-assessment of the students’ learning processes as well as the knowledge they acquire, thereby supporting monitoring. In addition, they improve regulation of learning processes by giving instructional guidance that is adjusted to what is needed by a particular student in a specific situation. In the present contribution, we describe a multimedia learning environment that monitors the students’ learning by registering and analyzing their eye movements and their knowledge by means of rapid assessment tasks. Moreover, the learning environment offers either assistive or directive adaptivity to support them (e.g., instructional prompts, changes in the design of the learning materials). We discuss challenges regarding the design of the adaptive (multimedia) learning environment that refer to the assessment of learning deficits as well as the choice of interventions aimed at overcoming these deficits.


Adaptive information environments Learning Multimedia Self-regulation Instructional support Eye movements Rapid verification tasks Cognitive processes Assessment 


  1. Akbulut, Y., & Cardak, C. S. (2012). Adaptive educational hypermedia accommodating learning styles: A content analysis of publications from 2000 to 2011. Computers & Education, 58, 835–842. doi: 10.1016/j.compedu.2011.10.008 CrossRefGoogle Scholar
  2. Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual representation and learning: The role of static and animated graphics. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 865–916). Mahwah, NJ: Erlbaum.Google Scholar
  3. Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 206–226). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  4. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209.CrossRefGoogle Scholar
  5. Azevedo, R., Millar, G. C., Taub, M., Mudrick, N. V., Bradbury, A. E., & Price, M. J. (2017). Using data visualizations to foster emotion regulation during self-regulated learning with advanced learning technologies. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 225–247). New York, NY: Springer.Google Scholar
  6. Barab, S. A., Bowdish, B. E., Young, M. F., & Owen, S. V. (1996). Understanding kiosk navigation: Using log files to capture hypermedia searches. Instructional Science, 24, 377–395.CrossRefGoogle Scholar
  7. Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and pictures: What kind of support for whom? Journal of Educational Psychology, 101, 282–293. doi: 10.1037/a0014312 CrossRefGoogle Scholar
  8. Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–444.  10.1146/annurev-psych-113011-143823 CrossRefPubMedGoogle Scholar
  9. Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31, 445–457.CrossRefGoogle Scholar
  10. Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11, 87–110.CrossRefGoogle Scholar
  11. Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 174–205). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  12. Conati, C., & Merten, C. (2007). Eye-tracking for user modeling in exploratory learning environments: An empirical evaluation. Knowledge-Based Systems, 20, 557–574. doi: 10.1016/j.knosys.2007.04.010 CrossRefGoogle Scholar
  13. Cromley, J. G., Bergey, B. W., Fitzhugh, S. L., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013). Effectiveness of student-constructed diagrams and self-explanation instruction. Learning & Instruction, 26, 45–58. doi: 10.1016/j.learninstruc.2013.01.003 CrossRefGoogle Scholar
  14. D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent tutoring system. International Journal of Human-Computer Studies, 70, 377–398. doi: 10.1016/j.ijhcs.2012.01.004 CrossRefGoogle Scholar
  15. Eitel, A. (2016). How repeated studying and testing affects multimedia learning: Evidence for adaptation to task demands. Learning and Instruction, 41, 70–84. doi: 10.1016/j.learninstruc.2015.10.003 CrossRefGoogle Scholar
  16. Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning & Instruction, 16, 511–525. doi: 10.1016/j.learninstruc.2006.10.001 CrossRefGoogle Scholar
  17. Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low-and high-ability children. Contemporary Educational Psychology, 24, 95–123. doi: 10.1006/ceps.1998.0987 CrossRefPubMedGoogle Scholar
  18. Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology. Applied, 18, 178–191. doi: 10.1037/a0026923 CrossRefPubMedGoogle Scholar
  19. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329–355.CrossRefPubMedGoogle Scholar
  20. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539. doi: 10.1007/s10648-007-9054-3 CrossRefGoogle Scholar
  21. Kalyuga, S. (2008). When less is more in cognitive diagnosis: A rapid online method for diagnosing learner task-specific expertise. Journal of Educational Psychology, 100, 603–612. doi: 10.1037/0022-0663.100.3.603 CrossRefGoogle Scholar
  22. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. doi: 10.1207/s15326985ep3801_4 CrossRefGoogle Scholar
  23. Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: Introduction to the special issue. Instructional Science, 38, 209–215. doi: 10.1007/s11251-009-9102-0 CrossRefGoogle Scholar
  24. Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating a strategy for learning from animations. Learning & Instruction, 20, 424–433. doi: 10.1016/j.learninstruc.2009.05.002 CrossRefGoogle Scholar
  25. Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172–187. doi: 10.1016/j.cedpsych.2015.01.004 CrossRefGoogle Scholar
  26. Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95–109. doi: 10.1016/j.compedu.2012.07.011 CrossRefGoogle Scholar
  27. Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  28. Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–120.CrossRefGoogle Scholar
  29. McNamara, D., Kintsch, E., Songer, N. B., & Kintsch, W. (1996). Are good texts always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14, 1–43. doi: 10.1207/s1532690xci1401_1 CrossRefGoogle Scholar
  30. Nückles, M., Hübner, S., Dümer, S., & Renkl, A. (2010). Expertise reversal effects in writing-to-learn. Instructional Science, 38, 237–258. doi: 10.1007/s11251-009-9106-9 CrossRefGoogle Scholar
  31. Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53, 445–453. doi: 10.1016/j.compedu.2009.03.002 CrossRefGoogle Scholar
  32. Park, O.-C., & Lee, J. (2004). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 651–684). Mahwah, NJ: Erlbaum.Google Scholar
  33. Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What it is and how education can promote it. International Journal of Educational Research, 13, 857–867.CrossRefGoogle Scholar
  34. Renkl, A., & Scheiter, K. (2015). Studying visual displays: How to instructionally support learning. Educational Psychology Review, 1–23. doi: 10.1007/s10648-015-9340-4
  35. Renkl, A., Skuballa, I. T., Schwonke, R., Harr, N., & Leber, J. (2015). The effects of rapid assessments and adaptive restudy prompts in multimedia learning. Educational Technology & Society, 18, 185–199.Google Scholar
  36. Richter, J., Scheiter, K., & Eitel, A. (in press). Signaling text–picture relations in multimedia learning: The influence of prior knowledge. Journal of Educational Psychology. CrossRefGoogle Scholar
  37. Roda, C., & Thomas, J. (2006). Attention aware systems: Theories, applications, and research agenda. Computers in Human Behavior, 22, 557–587. doi: 10.1016/j.chb.2005.12.005 CrossRefGoogle Scholar
  38. Ruf, T., & Ploetzner, R. (2014). One click is too far! How the presentation of cognitive learning aids influences their use in multimedia learning environments. Computers in Human Behavior, 38, 229–239. doi: 10.1016/j.chb.2014.06.002 CrossRefGoogle Scholar
  39. Scheiter, K., & Van Gog, T. (2009). Using eye tracking in applied research to study and stimulate the processing of information from multi-representational sources. Applied Cognitive Psychology, 23, 1209–1214. CrossRefGoogle Scholar
  40. Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11–26. doi: 10.1016/j.learninstruc.2014.11.002 CrossRefGoogle Scholar
  41. Scheiter, K., & Eitel, A. (2016). The use of eye tracking as a research and instructional tool in multimedia learning. In C. Was, F. Sansosti, & B. Morris (Eds.), Eye-tracking technology applications in educational research (pp. 143–164). Hershey, PA: IGI Global.Google Scholar
  42. Schlag, S., & Ploetzner, R. (2010). Supporting learning from illustrated texts: Conceptualizing and evaluating a learning strategy. Instructional Science, 39, 921–937. doi: 10.1007/s11251-010-9160-3 CrossRefGoogle Scholar
  43. Schmidt, H., Wassermann, B., & Zimmermann, G. (2014). An adaptive and adaptable learning platform with real- time eye-tracking support: Lessons learned. In S. Trahash, R. Ploetzner, G. Schneider, C. Gayer, D. Sassiat, & N. Wöhrle (Eds.), Tagungsband DeLFI 2014 (pp. 241–252). Bonn, Germany: Köölen Druck & Verlag GmbH.Google Scholar
  44. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010a). A closer look at split visual attention in system-and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110. doi: 10.1016/j.learninstruc.2009.02.011 CrossRefGoogle Scholar
  45. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010b). Explaining the modality and contiguity effects: New insights from investigating students’ viewing behavior. Applied Cognitive Psychology, 24, 226–237. doi: 10.1002/acp.1554 CrossRefGoogle Scholar
  46. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Schubert, C., Scheiter, K., Schüler, A., Schmidt, H., Zimmermann, G., Wassermann, B., … Eder, T. (n.d.). Adaptive multimedia: Using gaze-contingent instructional guidance to provide personalized processing support.Google Scholar
  48. Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used and how they can be made more useful. Applied Cognitive Psychology, 23, 1227–1243. doi: 10.1002/acp.1526 CrossRefGoogle Scholar
  49. Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18, 698–711. doi: 10.1080/09658211.2010.506441 CrossRefPubMedGoogle Scholar
  50. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning & Instruction, 13, 227–237. doi: 10.1016/S0959-4752(02)00022-1 CrossRefGoogle Scholar
  51. Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, D. Merrill, J. Van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 277–294). New York, NY: Erlbaum.Google Scholar
  52. Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the comprehension of processes and functions in technical systems. Frontiers in Psychology, 6, 598. doi: 10.3389/fpsyg.2015.00598 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Skuballa, I. T., Leber, J., Schmidt, H., Zimmermann, G., & Renkl, A. (2016). Using online eye-movement analyses in an adaptive learning environment. In L. Lin & R. K. Atkinson (Eds.), Educational technologies: Challenges, applications, and learning outcomes (pp. 115–142). Hauppauge, NY: Nova Science.Google Scholar
  54. Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 204–221.PubMedGoogle Scholar
  55. Spüler, M., Krumpe, T., Walter, C., Scharinger, C., Rosenstiel, W., & Gerjets, P. (2017). Brain-computer interfaces for educational applications. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 177–201). New York, NY: Springer.Google Scholar
  56. Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning & Instruction, 35, 1–15. doi: 10.1016/j.learninstruc.2014.09.002 CrossRefGoogle Scholar
  57. Sweller, J., Ayres, P. L., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer.CrossRefGoogle Scholar
  58. Toet, A. (2006). Gaze directed displays as an enabling technology for attention aware systems. Computers in Human Behavior, 22, 615–647. doi: 10.1016/j.chb.2005.12.010 CrossRefGoogle Scholar
  59. Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 95–99. CrossRefGoogle Scholar
  60. Veenman, M. J. V., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition & Learning, 1, 3–14. doi: 10.1007/s11409-006-6893-0 CrossRefGoogle Scholar
  61. Wassermann, B., Hardt, A., & Zimmermann, G. (2012). Generic gaze interaction events for web browsers: Using the eye tracker as input device. In WWW2012 Workshop: Emerging web technologies, facing the future of education (p. 6). Retrieved from
  62. Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Mahwah, NJ: Erlbaum.Google Scholar
  63. Winne, P. H., Vytasek, J. M., Patzak, A., Rakovic, M., Marzouk, Z., Pakdaman-Savoji, A., … Nesbit, J. C. (2017). Designs for learning analytics to support information problem solving. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 249–272). New York, NY: Springer.Google Scholar
  64. Zimmerman, B., & Schunk, D. (Eds.). (2001). Self-regulated learning and academic achievement: Theoretical perspectives (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katharina Scheiter
    • 1
  • Benjamin Fillisch
    • 2
  • Marie-Christin Krebs
    • 1
  • Jasmin Leber
    • 3
  • Rolf Ploetzner
    • 2
  • Alexander Renkl
    • 3
  • Holger Schmidt
    • 4
  • Anne Schüler
    • 1
  • Gottfried Zimmermann
    • 4
  1. 1.Leibniz-Institut für Wissensmedien TübingenTübingenGermany
  2. 2.Department of PsychologyUniversity of Education FreiburgFreiburgGermany
  3. 3.University of FreiburgFreiburgGermany
  4. 4.Hochschule der MedienStuttgartGermany

Personalised recommendations