Skip to main content

Radiotherapeutic Management of Lymphomas

  • Chapter
  • First Online:
Book cover Neoplastic Diseases of the Blood

Abstract

Basic Concepts: Historically, radiation therapy was an early curative treatment for Hodgkin lymphoma (HL), and it was also an effective treatment for non-Hodgkin lymphoma (NHL). Although effective multi-agent chemotherapy regimens for both HL and NHL have since been developed, radiation therapy remains an integral part of both curative and palliative management of lymphomas. Combined-modality therapy (CMT) has become standard in more clinical scenarios for HL than NHL, likely due to the more predictable progression and spread of HL. Nevertheless, the basic concepts affecting the optimal use of radiation in both diseases are similar, namely: staging, the dose–response relationship, combined-modality therapy, and risk/response-adapted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Peters MV. A study of survivals in Hodgkin’s disease treated radiologically. Am J Roentgenol Radium Therapy. 1950;63

    Google Scholar 

  2. Glatstein E, et al. The value of laparotomy and splenectomy in the staging of Hodgkin’s disease. Cancer. 1969;24(4):709–18.

    Article  CAS  PubMed  Google Scholar 

  3. Mendenhall NP. Diagnostic procedures and guidelines for the evaluation and follow-up of Hodgkin’s disease. Semin Radiat Oncol. 1996;6(3):131–45.

    Article  CAS  PubMed  Google Scholar 

  4. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med. 1987;28(3):288–92.

    CAS  PubMed  Google Scholar 

  5. Okada J, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med. 1991;32(4):686–91.

    CAS  PubMed  Google Scholar 

  6. Radford J, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.

    Article  CAS  PubMed  Google Scholar 

  7. Naumann R, et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer. 2004;90(3):620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer. 2005;104(5):1066–74.

    Article  PubMed  Google Scholar 

  9. Hutchings M, Specht L. PET/CT in the management of haematological malignancies. Eur J Haematol. 2008;80(5):369–80.

    Article  PubMed  Google Scholar 

  10. Cheson BD, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaplan HS. Evidence for a tumoricidal dose level in the radiotherapy of Hodgkin’s disease. Cancer Res. 1966;26(6):1221–4.

    CAS  PubMed  Google Scholar 

  12. Vijayakumar S, Myrianthopoulos LC. An updated dose-response analysis in Hodgkin’s disease. Radiother Oncol. 1992;24(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  13. Mendenhall NP, et al. The optimal dose of radiation in Hodgkin’s disease: an analysis of clinical and treatment factors affecting in-field disease control. Int J Radiat Oncol Biol Phys. 1999;44(3):551–61.

    Article  CAS  PubMed  Google Scholar 

  14. Kamath SS, et al. The impact of radiotherapy dose and other treatment-related and clinical factors on in-field control in stage I and II non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 1999;44(3):563–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lipshultz SE, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–43.

    Article  CAS  PubMed  Google Scholar 

  16. Miller TP, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin’s lymphoma. N Engl J Med. 1998;339(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kaldor JM, et al. Leukemia following Hodgkin’s disease. N Engl J Med. 1990;322(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  18. Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976;37(6):2813–25.

    Article  CAS  PubMed  Google Scholar 

  19. Hancock SL, Donaldson SS, Hoppe RT. Cardiac disease following treatment of Hodgkin’s disease in children and adolescents. J Clin Oncol. 1993;11(7):1208–15.

    Article  CAS  PubMed  Google Scholar 

  20. Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. JAMA. 1993;270(16):1949–55.

    Article  CAS  PubMed  Google Scholar 

  21. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med. 1991;325(9):599–605.

    Article  CAS  PubMed  Google Scholar 

  22. King V, et al. Symptomatic coronary artery disease after mantle irradiation for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1996;36(4):881–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cosset JM, et al. Pericarditis and myocardial infarctions after Hodgkin’s disease therapy. Int J Radiat Oncol Biol Phys. 1991;21(2):447–9.

    Article  CAS  PubMed  Google Scholar 

  24. Coia LR, Hanks GE. Complications from large field intermediate dose infradiaphragmatic radiation: an analysis of the patterns of care outcome studies for Hodgkin’s disease and seminoma. Int J Radiat Oncol Biol Phys. 1988;15(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  25. Donaldson SS, Link MP. Combined modality treatment with low-dose radiation and MOPP chemotherapy for children with Hodgkin's disease. J Clin Oncol. 1987;5(5):742–9.

    Article  CAS  PubMed  Google Scholar 

  26. Specht L, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854–62.

    Article  PubMed  Google Scholar 

  27. Illidge T, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys. 2014;89(1):49–58.

    Article  PubMed  Google Scholar 

  28. Yahalom J, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys. 2015;92(1):11–31.

    Article  PubMed  Google Scholar 

  29. Naida JD, et al. Analysis of localization errors in the definition of the mantle field using a beam’s eye view treatment-planning system. Int J Radiat Oncol Biol Phys. 1996;35(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  30. Goodman KA, et al. Intensity-modulated radiotherapy for lymphoma involving the mediastinum. Int J Radiat Oncol Biol Phys. 2005;62(1):198–206.

    Article  PubMed  Google Scholar 

  31. Nieder C, et al. Comparison of three different mediastinal radiotherapy techniques in female patients: impact on heart sparing and dose to the breasts. Radiother Oncol. 2007;82(3):301–7.

    Article  PubMed  Google Scholar 

  32. Chera BS, et al. Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(4):1173–80.

    Article  PubMed  Google Scholar 

  33. Hughes DB, et al. Treatment planning for Hodgkin’s disease: a patterns of care study. Int J Radiat Oncol Biol Phys. 1995;33(2):519–24.

    Article  CAS  PubMed  Google Scholar 

  34. Sebag-Montefiore DJ, et al. Variation in mantle technique: implications for establishing priorities for quality assurance in clinical trials. Radiother Oncol. 1992;23(3):144–9.

    Article  CAS  PubMed  Google Scholar 

  35. Cimino G, et al. MOPP chemotherapy versus extended-field radiotherapy in the management of pathological stages I-IIA Hodgkin’s disease. J Clin Oncol. 1989;7(6):732–7.

    Article  CAS  PubMed  Google Scholar 

  36. Biti GP, et al. Extended-field radiotherapy is superior to MOPP chemotherapy for the treatment of pathologic stage I-IIA Hodgkin’s disease: eight-year update of an Italian prospective randomized study. J Clin Oncol. 1992;10(3):378–82.

    Article  CAS  PubMed  Google Scholar 

  37. Yahalom J, et al. Impact of adjuvant radiation on the patterns and rate of relapse in advanced-stage Hodgkin’s disease treated with alternating chemotherapy combinations. J Clin Oncol. 1991;9(12):2193–201.

    Article  CAS  PubMed  Google Scholar 

  38. Press OW, et al. Phase III randomized intergroup trial of subtotal lymphoid irradiation versus doxorubicin, vinblastine, and subtotal lymphoid irradiation for stage IA to IIA Hodgkin’s disease. J Clin Oncol. 2001;19(22):4238–44.

    Article  CAS  PubMed  Google Scholar 

  39. Noordijk EM. Radiotherapy in early stage Hodgkin’s disease: principles and results of recent clinical trials. Ann Oncol. 1998;9(Suppl 5):S63–5.

    Article  PubMed  Google Scholar 

  40. Tubiana M, et al. Prognostic significance of erythrocyte sedimentation rate in clinical stages I-II of Hodgkin’s disease. J Clin Oncol. 1984;2(3):194–200.

    Article  CAS  PubMed  Google Scholar 

  41. Tubiana M, et al. Survival after recurrence: prognostic factors and spread patterns in clinical stages I and II of Hodgkin’s disease. Natl Cancer Inst Monogr. 1973;36:513–30.

    CAS  PubMed  Google Scholar 

  42. Walker A, et al. Survival of the older patient compared with the younger patient with Hodgkin’s disease. Influence of histologic type, staging, and treatment. Cancer. 1990;65(7):1635–40.

    Article  CAS  PubMed  Google Scholar 

  43. Hutchings M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sher DJ, et al. Prognostic significance of mid- and post-ABVD PET imaging in Hodgkin’s lymphoma: the importance of involved-field radiotherapy. Ann Oncol. 2009;20(11):1848–53.

    Article  CAS  PubMed  Google Scholar 

  45. Moskowitz CH, Zelenetz A, Schoder H. An update on the role of interim restaging FDG-PET in patients with diffuse large B-cell lymphoma and Hodgkin lymphoma. J Natl Compr Cancer Netw. 2010;8(3):347–52.

    Article  Google Scholar 

  46. Gallamini A, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.

    Article  CAS  PubMed  Google Scholar 

  47. Raemaekers JM, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–94.

    Article  PubMed  Google Scholar 

  48. Girinsky T, et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol. 2006;79(3):270–7.

    Article  PubMed  Google Scholar 

  49. Girinsky T, et al. The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol. 2008;88(2):202–10.

    Article  PubMed  Google Scholar 

  50. Yahalom J, Mauch P. The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann Oncol. 2002;13(Suppl 1):79–83.

    Article  PubMed  Google Scholar 

  51. Hodgson DC, Hudson MM, Constine LS. Pediatric hodgkin lymphoma: maximizing efficacy and minimizing toxicity. Semin Radiat Oncol. 2007;17(3):230–42.

    Article  PubMed  Google Scholar 

  52. Rostock RA, et al. CT scan modification in the treatment of mediastinal Hodgkin’s disease. Cancer. 1982;49(11):2267–75.

    Article  CAS  PubMed  Google Scholar 

  53. Eich HT, et al. Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin study group (GHSG). Strahlenther Onkol. 2008;184(8):406–10.

    Article  PubMed  Google Scholar 

  54. Engert A, et al. Two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine plus extended-field radiotherapy is superior to radiotherapy alone in early favorable Hodgkin’s lymphoma: final results of the GHSG HD7 trial. J Clin Oncol. 2007;25(23):3495–502.

    Article  CAS  PubMed  Google Scholar 

  55. Ferme C, et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med. 2007;357(19):1916–27.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer RM, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med. 2012;366(5):399–408.

    Article  CAS  PubMed  Google Scholar 

  57. Eghbali H, et al. Comparison of three radiation dose levels after EBVP regimen in favorable supradiaphragmatic clinical stages (CS) I-II Hodgkin’s lymphoma (HL): preliminary results of the EORTC-GELA H9-F trial. Blood. 2005;106(11):814.

    Google Scholar 

  58. Engert A, et al. Two cycles of ABVD followed by involved field radiotherapy with 20 gray (Gy) is the new standard of care in the treatment of patients with early-stage hodgkin lymphoma: final analysis of the randomized german hodgkin study group (GHSG) HD10. Study supported by the deutsche Krebshilfe and in part by the competence network malignant lymphoma. Blood. 2009;114(22):716.

    Google Scholar 

  59. Behringer K, et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): an open-label, randomised, non-inferiority trial. Lancet. 2015;385(9976):1418–27.

    Article  CAS  PubMed  Google Scholar 

  60. Eich HT, et al. Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin study group HD11 trial. J Clin Oncol. 2010;28(27):4199–206.

    Article  PubMed  Google Scholar 

  61. Horning SJ, et al. Assessment of the stanford V regimen and consolidative radiotherapy for bulky and advanced Hodgkin’s disease: eastern cooperative oncology group pilot study E1492. J Clin Oncol. 2000;18(5):972–80.

    Article  CAS  PubMed  Google Scholar 

  62. Horning SJ, et al. Stanford V and radiotherapy for locally extensive and advanced Hodgkin’s disease: mature results of a prospective clinical trial. J Clin Oncol. 2002;20(3):630–7.

    PubMed  Google Scholar 

  63. Kung FH, et al. POG 8625: a randomized trial comparing chemotherapy with chemoradiotherapy for children and adolescents with stages I, IIA, IIIA1 Hodgkin disease: a report from the Children’s oncology group. J Pediatr Hematol Oncol. 2006;28(6):362–8.

    Article  CAS  PubMed  Google Scholar 

  64. Friedman DL, et al. Dose-intensive response-based chemotherapy and radiation therapy for children and adolescents with newly diagnosed intermediate-risk hodgkin lymphoma: a report from the Children’s oncology group study AHOD0031. J Clin Oncol. 2014;32(32):3651–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mauch PM, et al. Mantle irradiation alone for selected patients with laparotomy-staged IA to IIA Hodgkin’s disease: preliminary results of a prospective trial. J Clin Oncol. 1995;13(4):947–52.

    Article  CAS  PubMed  Google Scholar 

  66. Karayalcin G, et al. Lymphocyte predominant Hodgkin disease: clinico-pathologic features and results of treatment—the pediatric oncology group experience. Med Pediatr Oncol. 1997;29(6):519–25.

    Article  CAS  PubMed  Google Scholar 

  67. Haas RL, et al. Low-dose involved-field radiotherapy as alternative treatment of nodular lymphocyte predominance Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2009;74(4):1199–202.

    Article  PubMed  Google Scholar 

  68. Reddy JP, et al. Outcomes after chemotherapy followed by radiation for stage IIB Hodgkin lymphoma with bulky disease. Clin Lymphoma Myeloma Leuk. 2015;15(11):664.e2–70.e2.

    Article  Google Scholar 

  69. Aleman BM, et al. Involved-field radiotherapy for advanced Hodgkin’s lymphoma. N Engl J Med. 2003;348(24):2396–406.

    Article  PubMed  Google Scholar 

  70. Aleman BM, et al. Involved-field radiotherapy for patients in partial remission after chemotherapy for advanced Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2007;67(1):19–30.

    Article  PubMed  Google Scholar 

  71. Engert A, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54.

    Article  PubMed  Google Scholar 

  72. Engert A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9.

    Article  CAS  PubMed  Google Scholar 

  73. Abuzetun JY, et al. The Stanford V regimen is effective in patients with good risk Hodgkin lymphoma but radiotherapy is a necessary component. Br J Haematol. 2009;144(4):531–7.

    Article  CAS  PubMed  Google Scholar 

  74. van Nimwegen FA, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43.

    Article  PubMed  CAS  Google Scholar 

  75. Hodgson DC, et al. Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol. 2007;25(12):1489–97.

    Article  PubMed  Google Scholar 

  76. Travis LB, et al. Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J Natl Cancer Inst. 2005;97(19):1428–37.

    Article  PubMed  Google Scholar 

  77. Schaapveld M, et al. Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med. 2015;373(26):2499–511.

    Article  CAS  PubMed  Google Scholar 

  78. De Bruin ML, et al. Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol. 2009;27(26):4239–46.

    Article  PubMed  Google Scholar 

  79. Chung CS, et al. Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys. 2013;87(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  80. Lee L, et al. Screening mammography for young women treated with supradiaphragmatic radiation for Hodgkin’s lymphoma. Ann Oncol. 2008;19(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  81. Kaldor JM, et al. Lung cancer following Hodgkin’s disease: a case-control study. Int J Cancer. 1992;52(5):677–81.

    Article  CAS  PubMed  Google Scholar 

  82. Ganz PA. Survivorship: adult cancer survivors. Prim Care. 2009;36(4):721–41.

    Article  PubMed  Google Scholar 

  83. Administration USFaD. Rituximab (marketed as Rituxan) Prescribing and Label Information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/103705s5299lbl.pdf. Accessed 2 Oct 2010.

  84. Gregory SA, et al. Harnessing the energy: development of radioimmunotherapy for patients with non-Hodgkin’s lymphoma. Oncologist. 2009;14(Suppl 2):4–16.

    Article  CAS  PubMed  Google Scholar 

  85. Dana BW, et al. Long-term follow-up of patients with low-grade malignant lymphomas treated with doxorubicin-based chemotherapy or chemoimmunotherapy. J Clin Oncol. 1993;11(4):644–51.

    Article  CAS  PubMed  Google Scholar 

  86. Kimby E, et al. Chlorambucil/prednisone vs. CHOP in symptomatic low-grade non-Hodgkin’s lymphomas: a randomized trial from the lymphoma group of Central Sweden. Ann Oncol. 1994;5(Suppl 2):67–71.

    Article  PubMed  Google Scholar 

  87. Mac Manus MP. And R.T. Hoppe, Is radiotherapy curative for stage I and II low-grade follicular lymphoma? Results of a long-term follow-up study of patients treated at Stanford University. J Clin Oncol. 1996;14(4):1282–90.

    Article  CAS  PubMed  Google Scholar 

  88. Friedberg JW, et al. Follicular lymphoma in the United States: first report of the national LymphoCare study. J Clin Oncol. 2009;27(8):1202–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vargo JA, et al. What is the optimal management of early-stage low-grade follicular lymphoma in the modern era? Cancer. 2015;121(18):3325–34.

    Article  PubMed  Google Scholar 

  90. Lowry L, et al. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised phase III trial. Radiother Oncol. 2011;100(1):86–92.

    Article  PubMed  Google Scholar 

  91. Nathu RM, et al. Non-Hodgkin’s lymphoma of the head and neck: a 30-year experience at the University of Florida. Head Neck. 1999;21(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  92. Mac Manus MP, et al. Treatment with 6 Cycles of CVP or R-CVP after Involved Field Radiation Therapy (IFRT) Significantly Improves Progression-free Survival Compared to IFRT alone in Stage I-II Low Grade Follicular Lymphoma: Results of an International Randomized Trial, in ASTRO 58th Annual Meeting. 2016; Boston, MA.

    Google Scholar 

  93. De Los Santos JF, Mendenhall NP, Lynch JW Jr. Is comprehensive lymphatic irradiation for low-grade non-Hodgkin’s lymphoma curative therapy? Long-term experience at a single institution. Int J Radiat Oncol Biol Phys. 1997;38(1):3–8.

    Article  PubMed  Google Scholar 

  94. Glatstein E, et al. Non-Hodgkin’s lymphomas of stage III extent. Is total lymphoid irradiation appropriate treatment? Cancer. 1976;37(6):2806–12.

    Article  CAS  PubMed  Google Scholar 

  95. Jacobs JP, et al. Central lymphatic irradiation for stage III nodular malignant lymphoma: long-term results. J Clin Oncol. 1993;11(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kaminski MS, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441–9.

    Article  CAS  PubMed  Google Scholar 

  97. Plastaras JP, Glatstein E, Schuster SJ. Commentary: let the tail wag the dog: the case for radioimmunotherapy of low-grade follicular lymphoma. Oncologist. 2008;13(6):655–6.

    Article  PubMed  Google Scholar 

  98. Johannsson J, et al. Phase II study of palliative low-dose local radiotherapy in disseminated indolent non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Int J Radiat Oncol Biol Phys. 2002;54(5):1466–70.

    Article  PubMed  Google Scholar 

  99. Haas RL, et al. Effective palliation by low dose local radiotherapy for recurrent and/or chemotherapy refractory non-follicular lymphoma patients. Eur J Cancer. 2005;41(12):1724–30.

    Article  CAS  PubMed  Google Scholar 

  100. Horning SJ, et al. Chemotherapy with or without radiotherapy in limited-stage diffuse aggressive non-Hodgkin’s lymphoma: eastern cooperative oncology group study 1484. J Clin Oncol. 2004;22(15):3032–8.

    Article  CAS  PubMed  Google Scholar 

  101. Miller TP, Leblanc M, Spier CM. CHOP alone compared to CHOP plus radiotherapy for early stage aggressive non-Hodgkin’s lymphomas: update of the southwest oncology group (SWOG) randomized trial. Blood. 2001;98:S742–3.

    Article  Google Scholar 

  102. Reyes F, et al. ACVBP versus CHOP plus radiotherapy for localized aggressive lymphoma. N Engl J Med. 2005;352(12):1197–205.

    Article  CAS  PubMed  Google Scholar 

  103. Held G, et al. Role of radiotherapy to bulky disease in elderly patients with aggressive B-cell lymphoma. J Clin Oncol. 2014;32(11):1112–8.

    Article  PubMed  Google Scholar 

  104. Ng AK, et al. Re-examining the role of radiation therapy for diffuse large B-cell lymphoma in the modern era. J Clin Oncol. 2016;34(13):1443–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Plastaras M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Plastaras, J.P., Glatstein, E. (2018). Radiotherapeutic Management of Lymphomas. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics