Skip to main content

Pathology of Non-Hodgkin and Hodgkin Lymphomas

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Non-Hodgkin lymphomas (NHLs) are neoplasms derived from lymphocytes. Approximately 85% of all tumors are derived from B cells, with the remaining NHLs derived from lymphocytes of T- or NK-cell lineage or rarely from histiocytes. Classification is a key component to advances in the understanding of NHLs and classification has evolved greatly over the years, from purely morphologic systems to the inclusion of immunophenotypic and molecular data. Recent applications of high throughput methods to the study of NHLs have contributed to our understanding and the recognition of distinct entities. The current consensus classification of NHLs is that of the World Health Organization (WHO) which was updated in 2016. The current classification recognizes approximately 90 entities. In the WHO system entities are defined on the basis of clinical, histologic, immunophenotypic, and molecular features. Although highly useful, the WHO classification should not “fix knowledge in time.” It is expected that knowledge will continue to evolve and that a number of changes to the system will be required at the time the next edition will be published.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weissman IL, Warnke R, Butcher EC, et al. The lymphoid system: its normal architecture and the potential for understanding the system through the study of lymphoproliferative diseases. Hum Pathol. 1978;9:25–45.

    Article  CAS  PubMed  Google Scholar 

  2. Picker LJ, Weiss LM, Medeiros LJ, et al. Immunophenotypic criteria for the diagnosis of non-Hodgkin’s lymphoma. Am J Pathol. 1987;128:181–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng B, Jorgensen JL, Jones D, et al. Flow cytometric detection of peripheral blood involvement by mycosis fungoides and Sézary syndrome using T-cell receptor Vbeta chain antibodies and its application in blood staging. Mod Pathol. 2010;23:284–95.

    Article  CAS  PubMed  Google Scholar 

  4. Epling-Burnette PK, Painter JS, Chaurasia P, et al. Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood. 2004;103:3431–9.

    Article  CAS  PubMed  Google Scholar 

  5. Medeiros LJ, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med. 1999;123:1189–207.

    CAS  PubMed  Google Scholar 

  6. Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med. 2003;127:1148–60.

    CAS  PubMed  Google Scholar 

  7. Tsai AG, Lieber MR. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics. 2010;11(Suppl 1):S1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann S, Döring C, Vucic E, et al. Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol. 2015;169:415–22.

    Article  PubMed  Google Scholar 

  10. Rappaport H, Winter WJ, Hicks EB. Follicular lymphoma: a reevaluation of its position in the scheme of malignant lymphoma, based on a survey of 253 cases. Cancer. 1956;9:792–821.

    Article  PubMed  Google Scholar 

  11. Lukes RJ, Collins RD. Immunological characterization of human malignant lymphomas. Cancer. 1974;34:1488–503.

    Article  Google Scholar 

  12. Gerard-Marchant R, Hamlin I, Lennert K, et al. Classification of non-Hodgkin’s lymphomas. Lancet. 1974;II:406–8.

    Google Scholar 

  13. Rosenberg SA, Berard CW, Brown BW, et al. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. Cancer. 1982;49:2112–35.

    Article  Google Scholar 

  14. Stansfeld AG, Diebold J, Kapanci Y, et al. Updated Kiel classification for lymphomas. Lancet. 1988;I:292–3.

    Article  Google Scholar 

  15. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood. 1994;84:1361–92.

    CAS  PubMed  Google Scholar 

  16. The non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the international lymphoma study group classification of non-Hodgkin’s lymphoma. Blood. 1997;89:3909–18.

    Google Scholar 

  17. Swardlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H Thiete J (Eds). WHO classification of tumours of haematopoietic and lymphoid tissues. (revised 4th edition) Lyon: IARC, 2017.

    Google Scholar 

  18. Borowitz MJ, Chan JKC. B lymphoblastic leukemia/lymphoma, no otherwise specified. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 168–9.

    Google Scholar 

  19. Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000;24:1480–90.

    Article  CAS  PubMed  Google Scholar 

  20. Iravani S, Singleton TP, Ross CW, Schnitzer B. Precursor B lymphoblastic lymphoma presenting as lytic bone lesions. Am J Clin Pathol. 1999;112:836–43.

    Article  CAS  PubMed  Google Scholar 

  21. Muljono A, Graf NS, Arbuckle S. Primary cutaneous lymphoblastic lymphoma in children: series of eight cases with review of the literature. Pathology. 2009;41:223–8.

    Article  PubMed  Google Scholar 

  22. Gokbuget N, Hoelzer D. Treatment of adult acture lymphoblastic leukemia. Semin Hematol. 2009;46:64–75.

    Article  PubMed  Google Scholar 

  23. Nathwani BN, Kim H, Rappaport H. Malignant lymphoma, lymphoblastic. Cancer. 1976;38:964–83.

    Article  CAS  PubMed  Google Scholar 

  24. Korsmeyer SJ, Hieter PA, Ravetch JV, et al. Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. Proc Natl Acad Sci U S A. 1981;78:7096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borowitz MJ, Chan JKC. B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 171–5.

    Google Scholar 

  26. Tsimberidou AM, Wen S, O’Brien S, et al. Assessment of chronic lymphocytic leukemia and small lymphocytic lymphoma by absolute lymphocyte counts in 2126 patients: 20 years of experience at the University of Texas M.D. Anderson cancer center. J Clin Oncol. 2007;25:4648–56.

    Article  PubMed  Google Scholar 

  27. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  CAS  PubMed  Google Scholar 

  28. Asplund SL, McKenna RW, Howard MS, et al. Immunophenotype does not correlate with lymph node histology in chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Surg Pathol. 2002;26:624–9.

    Article  PubMed  Google Scholar 

  29. Inamdar KV, Bueso-Ramos CE. Pathology of chronic lymphocytic leukemia: an update. Ann Diagn Pathol. 2007;11:363–89.

    Article  PubMed  Google Scholar 

  30. Gupta D, Lim MS, Medeiros LJ, et al. Small lymphocytic lymphoma with perifollicular, marginal zone, and interfollicular distribution. Mod Pathol. 2000;13:1161–6.

    Article  CAS  PubMed  Google Scholar 

  31. Cossman J, Neckers LM, Braziel RM, et al. In vitro enhancement of immunoglobulin gene expression in chronic lymphocytic leukemia. J Clin Invest. 1984;73:587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin CC, Lin P, Carney DA, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma associated with IgM paraprotein. Am J Clin Pathol. 2005;123:594–602.

    Article  PubMed  Google Scholar 

  33. Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16:145–62.

    Article  PubMed  CAS  Google Scholar 

  34. Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20:246–59.

    Article  CAS  PubMed  Google Scholar 

  35. Habb LK, Finn WG. Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70:124–35.

    Article  Google Scholar 

  36. Tandon B, Peterson L, Gao J, et al. Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol. 2011;24:1433–43.

    Article  CAS  PubMed  Google Scholar 

  37. Haferlach C, Kicker F, Schnittger S, et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and Immunophenotyping. Leukemia. 2007;21:2442–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ouillette P, Collins R, Shakhan S, et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res. 2011;17:6778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dal Bo M, Rossi FM, Rossi D, et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosom Cancer. 2011;50:633–43.

    Article  CAS  PubMed  Google Scholar 

  40. Huh YO, Abruzzo LV, Rassidakis GZ, et al. The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytogenetic study of seven cases. Br J Haematol. 2007;136:220–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  PubMed  Google Scholar 

  42. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.

    CAS  PubMed  Google Scholar 

  43. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208:1389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2012;121:1403–12.

    Article  PubMed  CAS  Google Scholar 

  47. Weissmann S, Roller A, Jeromin S, et al. Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia. 2013;27:2393–6.

    Article  CAS  PubMed  Google Scholar 

  48. Del Giudice I, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97:437–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossi D, Bruscaggin A, Spina V, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2013;119:521–9.

    Article  CAS  Google Scholar 

  52. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29:329–36.

    Article  CAS  PubMed  Google Scholar 

  53. Speedy HE, Di Bernardo MC, Sava GP, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014;46:56–60.

    Article  CAS  PubMed  Google Scholar 

  54. Berndt SI, Skibola CF, Joseph V, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45:868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thornton PD, Gruszk-Westwood AM, Hamoudi RA, et al. Characterisation of TP53 abnormalities in chronic lymphocytic leukaemia. Hematol J. 2004;5:47–54.

    Article  CAS  PubMed  Google Scholar 

  56. Fabbri G, Khiabanian H, Holmes AB, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med. 2013;210:2273–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsimberidou AM, O’Brien S, Kantarjian HM, et al. Hodgkin transformation of chronic lymphocytic leukemia: the M.D. Anderson cancer center experience. Cancer. 2006;107:1294–302.

    Article  CAS  PubMed  Google Scholar 

  58. Agbay RL, Loghavi S, Medeiros LJ, et al. High-grade transformation of low-grade B-cell lymphoma: pathology and molecular pathogenesis. Am J Surg Pathol. 2016;40:e1–16.

    Article  PubMed  Google Scholar 

  59. Schlette E, Bueso-Ramos C, Giles F, et al. Mature B-cell leukemias with more than 55% prolymphocytes: a heterogeneous group that includes an unusual variant of mantle lymphoma. Am J Clin Pathol. 2001;11:571–81.

    Article  Google Scholar 

  60. Swerdlow SH, Berger F, Pileri SA, et al. Lymphoplasmacytic lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 194–5.

    Google Scholar 

  61. Treon SP. How I treat Waldenstrom Macroglobulinemia. Blood. 2009;114:2375–83.

    Article  CAS  PubMed  Google Scholar 

  62. Lin P, Medeiros LJ. Lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: an evolving concept. Adv Anat Pathol. 2005;12:246–55.

    Article  PubMed  Google Scholar 

  63. Won YW, Kim SJ, Kim K, et al. Clinical features and treatment outcomes of lymphoplasmacytic lymphoma: a single center experience in Korea. Ann Hematol. 2010;89:1011–8.

    Article  CAS  PubMed  Google Scholar 

  64. Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113:4163–70.

    Article  CAS  PubMed  Google Scholar 

  65. Morice WG, Chen D, Kurtin PJ, et al. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Walderstrom’s macroglobulinemia. Mod Pathol. 2009;22:807–16.

    Article  CAS  PubMed  Google Scholar 

  66. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  PubMed  Google Scholar 

  67. Jiménez C, Sebastián E, Chillón MC, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia. 2013;27:1722–8.

    Article  PubMed  CAS  Google Scholar 

  68. Willenbacher W, Willenbacher E, Brunner A, et al. Improved accuracy of discrimination between IgM multiple myeloma and Waldenström macroglobulinaemia by testing for MYD88 L265P mutations. Br J Haematol. 2013;161:902–4.

    Article  CAS  PubMed  Google Scholar 

  69. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    Article  CAS  PubMed  Google Scholar 

  70. Harris NL, Nathwani BN, Swerdlow SH, et al. Follicular lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 220–6.

    Google Scholar 

  71. Oschiles I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the non-Hodgkin’s lymphoma—berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95:253–9.

    Article  Google Scholar 

  72. Nathwani BN, Winberg CD, Diamond LW, et al. Morphologic criteria for the differentiation of follicular lymphoma from florid reactive follicular hyperplasia: a study of 80 cases. Cancer. 1981;48:1974–180.

    Google Scholar 

  73. Goodlad JR, Batstone PJ, Hamilton D, et al. Follicular lymphoma with marginal zone differentiation: cytogenetic findings of a high-risk variant of follicular lymphoma. Histopathology. 2003;42:292–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ott G, Katzenberger T, Lohr A, et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood. 2002;99:3806–12.

    Article  CAS  PubMed  Google Scholar 

  75. Chabner BA, Fisher RI, Young RC, et al. Staging of non-Hodgkin’s lymphoma. Semin Oncol. 1980;7:285–91.

    CAS  PubMed  Google Scholar 

  76. Conlan MG, Bast M, Armitage JO, et al. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska lymphoma study group. J Clin Oncol. 1990;8:1163–72.

    Article  CAS  PubMed  Google Scholar 

  77. Mantei K, Wood BL. Flow cytometric evaluation of CD38 expression assists in distinguishing follicular hyperplasia from follicular lymphoma. Cytometry B Clin Cytom. 2009;76:315–20.

    Article  PubMed  Google Scholar 

  78. Koster A, Tromp HA, Raemaekers JM, et al. The prognostic significance of the intra-follicular tumor cell proliferative rate in follicular lymphoma. Haematologica. 2007;92:184–90.

    Article  PubMed  Google Scholar 

  79. Yunis JJ, Oken MM, Kaplan ME, et al. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med. 1982;307:1231–6.

    Article  CAS  PubMed  Google Scholar 

  80. Aster JC, Kobayashi Y, Shiota M, et al. Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol. 1992;141:291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69.

    Article  CAS  PubMed  Google Scholar 

  82. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16:637–50.

    Article  CAS  PubMed  Google Scholar 

  83. Green MR, Kihira S, Liu CL, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112:E1116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46:176–81.

    Article  CAS  PubMed  Google Scholar 

  85. Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16:1111–22.

    Article  CAS  PubMed  Google Scholar 

  86. Montes-Moreno S, Castro Y, Rodriguez-Pinilla SM, et al. Intrafollicular neoplasia/in situ follicular lymphoma: review of a series of 13 cases. Histopathology. 2010;56:658–62.

    Article  PubMed  Google Scholar 

  87. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99:1959–64.

    Article  CAS  PubMed  Google Scholar 

  88. Louissaint A Jr, Ackerman AM, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120:2395–404.

    Article  CAS  PubMed  Google Scholar 

  89. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113:1053–61.

    Article  CAS  PubMed  Google Scholar 

  90. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118:139–47.

    Article  CAS  PubMed  Google Scholar 

  91. Medeiros LJ, Harmon DC, Linggood RM, et al. Immunohistologic features predict clinical behavior of orbital and conjunctival lymphoid infiltrates. Blood. 1989;74:2121–9.

    CAS  PubMed  Google Scholar 

  92. Knowles DM, Athan E, Ubriaco A, et al. Extranodal noncutaneous lymphoid hyperplasias represent a continuous spectrum of B-cell neoplasia: demonstration by molecular genetic analysis. Blood. 1989;73:1635–45.

    CAS  PubMed  Google Scholar 

  93. Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue: a distinctive type of B-cell lymphoma. Cancer. 1983;52:1410–6.

    Article  CAS  PubMed  Google Scholar 

  94. Isaacson PG, Cholt A, Nakamura S, et al. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 214–7.

    Google Scholar 

  95. Raderer M, Wohrer S, Streubel B, et al. Assessment of disease dissemination in gastric compared with extragastric mucosa-associated lymphoid tissue lymphoma using extensive staging: a single-center experience. J Clin Oncol. 2006;24:3136–41.

    Article  PubMed  Google Scholar 

  96. de Boer JP, Hiddink RF, Raderer M, et al. Dissemination patterns in non-gastric MALT lymphoma. Haematologica. 2008;93:201–6.

    Article  PubMed  Google Scholar 

  97. Mazloom A, Medeiros LJ, McLaughlin PW, et al. Marginal zone lymphomas: factors that affect the final outcome. Cancer. 2010;116:4291–8.

    Article  PubMed  Google Scholar 

  98. Isaacson PG, Wotherspoon AC, Diss T, Pan L. Follicular colonization in B-cell lymphoma of mucosa-associated lymphoid tissue. Am J Surg Pathol. 1990;15:819–28.

    Article  Google Scholar 

  99. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;2:1175–6.

    Article  Google Scholar 

  100. Wotherspoon AC, Doglioni C, Diss T, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342:575–7.

    Article  CAS  PubMed  Google Scholar 

  101. Saito Y, Suzuki H, Tsugawa H, et al. Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to helicobacter pylori eradication. PLoS One. 2012;7:e47396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Di Lisio L, Sánchez-Beato M, Gómez-López G, et al. MicroRNA signatures in B-cell lymphomas. Blood Cancer J. 2012;2:e57.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Craig VJ, Cogliatti SB, Rehrauer H, et al. Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives helicobacter-associated gastric lymphomagenesis. Cancer Res. 2011;71:3616–24.

    Article  CAS  PubMed  Google Scholar 

  104. Lin WC, Tsai HF, Kuo SH, et al. Translocation of helicobacter pylori CagA into human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res. 2010;70:5740–8.

    Article  CAS  PubMed  Google Scholar 

  105. Ferreri AJ, Dolcetti R, Magnino S, et al. Chlamydial infection: the link with ocular adnexal lymphomas. Nat Rev Clin Oncol. 2009;6:658–69.

    Article  PubMed  Google Scholar 

  106. Cho-Vega JH, Vega F, Rassidakis G, et al. Primary cutaneous marginal zone B-cell lymphoma. Am J Clin Pathol. 2006;125(Suppl):S38–49.

    PubMed  Google Scholar 

  107. Lecuit M, Abachin E, Martin A, et al. Immunoproliferative small intestinal disease associated with campylobacter jejuni. N Engl J Med. 2004;350:239–48.

    Article  CAS  PubMed  Google Scholar 

  108. Holm LE, Blogren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med. 1985;312:601–4.

    Article  CAS  PubMed  Google Scholar 

  109. Konoplev S, Lin P, Qiu X, et al. Clonal relationship of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue involving different sites. Am J Clin Pathol. 2010;134:112–8.

    Article  CAS  PubMed  Google Scholar 

  110. Vinatzer U, Gollinger M, Mullauer L, et al. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14:6426–31.

    Article  CAS  PubMed  Google Scholar 

  111. Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93:3601–9.

    CAS  PubMed  Google Scholar 

  112. Akagi T, Motegi M, Tamura A, et al. A novel gene, MALT1 at 18q21, is involved in t(11;18)(q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 1999;18:5785–94.

    Article  CAS  PubMed  Google Scholar 

  113. Lucas PC, Yonezumi M, Inohara N et al. Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-κB signaling pathway. J Biol Chem. 2001;276:19012–19019.

    Google Scholar 

  114. Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101:2335–9.

    Article  CAS  PubMed  Google Scholar 

  115. Streubel B, Vinatzer U, Lamprecht A, et al. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:652–8.

    Article  CAS  PubMed  Google Scholar 

  116. Willis TG, Jadayel DM, Du MQ, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96:35–45.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang Q, Siebert R, Yan M, et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet. 1999;22:63–8.

    Article  CAS  PubMed  Google Scholar 

  118. Hamoudi RA, Appert A, Ye H, et al. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia. 2010;24:1487–97.

    Article  CAS  PubMed  Google Scholar 

  119. Ott G, Kalla J, Steinhoff A, et al. Trisomy 3 is not a common feature in malignant lymphomas of mucosa-associated lymphoid tissue type. Am J Pathol. 1998;153:689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kwee I, Rancoita PM, Rinaldi A, et al. Genomic profiles of MALT lymphomas: variability across anatomical sites. Haematologica. 2011;96:1064–6.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rinaldi A, Mian M, Chigrinova E, et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood. 2011;117:1595–604.

    Article  CAS  PubMed  Google Scholar 

  122. Li ZM, Rinaldi A, Cavalli A, Mensah AA, et al. MYD88 somatic mutations in MALT lymphomas. Br J Haematol. 2012;158:662–4.

    Article  CAS  PubMed  Google Scholar 

  123. Sheibani K, Sohn CC, Burke JS, et al. Monocytoid B-cell lymphoma. A novel B-cell neoplasm. Am J Pathol. 1986;124:310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Campo E, Pileri SA, Jaffe ES. Nodal marginal zone lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 218–9.

    Google Scholar 

  125. Arcaini L, Lucioni M, Boveri E, et al. Nodal marginal zone lymphoma: current knowledge and future directions of a heterogeneous disease. Eur J Haematol. 2009;83:165–74.

    Article  PubMed  Google Scholar 

  126. Kojima M, Inagaki H, Motoori T, et al. Clinical implications of nodal marginal zone B-cell lymphoma among Japanese: study of 65 cases. Cancer Sci. 2007;98:44–9.

    Article  CAS  PubMed  Google Scholar 

  127. Salama ME, Lossos IS, Warnke RA, et al. Immunoarchitectural patterns in nodal marginal zone B-cell lymphoma: a study of 51 cases. Am J Clin Pathol. 2009;132:39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Camacho FI, Algara P, Mollejo M, Garcia JF, et al. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol. 2003;27:762–71.

    Article  PubMed  Google Scholar 

  129. Kanellis G, Roncador G, Arribas A, et al. Identification of MNDA as a new marker for nodal marginal zone lymphoma. Leukemia. 2009;23:1847–57.

    Article  CAS  PubMed  Google Scholar 

  130. van den Brand M, van Krieken JH. Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review. Haematologica. 2013;98:1003–13.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Spina V, Khiabanian H, Messina M, et al. The genetics of nodal marginal zone lymphoma. Blood 2016;128:1362–1373.

    Google Scholar 

  132. Dierlamm J, Michaux L, Wlodarska I, et al. Trisomy 3 in marginal zone B-cell lymphoma: a study based on cytogenetic analysis and fluorescence in situ hybridization. Br J Haematol. 1996;93:242–9.

    Article  CAS  PubMed  Google Scholar 

  133. Taddesse-Heath L, Pittaluga S, Sorbara L, et al. Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol. 2003;27:522–31.

    Article  PubMed  Google Scholar 

  134. Schmid C, Kirkham N, Diss T, et al. Splenic marginal zone cell lymphoma. Am J Surg Pathol. 1992;16:455–66.

    Article  CAS  PubMed  Google Scholar 

  135. Isaascon PG, Piris MA, Berger F, et al. Splenic B-cell marginal zone lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 185–7.

    Google Scholar 

  136. Matutes E, Oscier D, Montalban C, et al. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2008;22:487–95.

    Article  CAS  PubMed  Google Scholar 

  137. Van Huyen JP, Molina T, Delmer A, et al. Splenic marginal zone lymphoma with or without plasmacytic differentiation. Am J Surg Pathol. 2000;24:1581–92.

    Article  Google Scholar 

  138. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med. 2002;347:89–94.

    Article  CAS  PubMed  Google Scholar 

  139. Castelli R, Wu MA, Arquati M, et al. High prevalence of splenic marginal zone lymphoma among patients with acquired C1 inhibtor deficiency. Br J Haematol. 2016;172:902–8.

    Article  PubMed  Google Scholar 

  140. Piris MA, Arribas A, Mollejo M. Marginal zone lymphoma. Semin Diagn Pathol. 2011;28:135–45.

    Article  PubMed  Google Scholar 

  141. Baseggio L, Traverse-Glehen A, Petinataud F, et al. CD5 expression identifies a subset of splenic marginal zone lymphomas with higher lymphocytosis: a clinico-pathological, cytogenetic and molecular study of 24 cases. Haematologica. 2010;95:604–12.

    Article  CAS  PubMed  Google Scholar 

  142. Salido M, Baro C, Oscier D, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the splenic B-cell lymphoma group. Blood. 2010;116:1479–88.

    Article  CAS  PubMed  Google Scholar 

  143. Traverse-Glehen A, Davi F, Ben Simon E, et al. Analysis of VH genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection. Haematologica. 2005;90:470–8.

    CAS  PubMed  Google Scholar 

  144. Zibellini S, Capello D, Forconi F, et al. Sterotyped patterns of B-cell receptor in splenic marginal zone lymphoma. Haematologica. 2010;95:1792–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thieblemont C, Nasser V, Felman P, et al. Small lymphocytic lymphoma, marginal zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct gene-expression profiles allowing molecular diagnosis. Blood. 2004;103:2727–37.

    Article  CAS  PubMed  Google Scholar 

  146. Martinez-Lopez A, Curiel-Olmo S, Mollejo M, et al. MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma. Am J Surg Pathol. 2015;39:644–51.

    Article  PubMed  Google Scholar 

  147. Peveling-Oberhag J, Wolters F, Döring C, et al. Whole exome sequencing of microdissected splenic marginal zone lymphoma: a study to discover novel tumor-specific mutations. BMC Cancer. 2015;15:773.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  148. Clipson A, Wang M, de Leval L, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29:1177–85.

    Article  CAS  PubMed  Google Scholar 

  149. Piris MA, Foucar K, Mollejo M, et al. Splenic B-cell lymphoma/leukemia, unclassifiable. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 191–3.

    Google Scholar 

  150. Martinez D, Navarro A, Martinez-Trillos A, et al. NOTCH1, TP53, and MAP 2K1 mutations in splenic diffuse red pulp small B-cell lymphoma are associated with progressive disease. Am J Surg Pathol. 2016;40:192–201.

    PubMed  Google Scholar 

  151. Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 229–32.

    Google Scholar 

  152. Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012;122:3416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Oinonen R, Franssila K, Teerenhovi L, et al. Mantle cell lymphoma: clinical features, treatment and prognosis of 94 patients. Eur J Cancer. 1998;34:329–36.

    Article  CAS  PubMed  Google Scholar 

  154. Tiemann M, Schrader C, Klapper W, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL network. Br J Haematol. 2005;131:29–38.

    Article  PubMed  Google Scholar 

  155. Ferrer A, Salaverria I, Bosch F, et al. Leukemic involvement is a common feature in mantle cell lymphoma. Cancer. 2007;109:2473–80.

    Article  CAS  PubMed  Google Scholar 

  156. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–10.

    Article  CAS  PubMed  Google Scholar 

  157. Robak T, Huang H, Jin J, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015;372:944–53.

    Article  CAS  PubMed  Google Scholar 

  158. Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367:520–31.

    Article  CAS  PubMed  Google Scholar 

  159. Weisenburger DD, Vose JM, Greiner TC, et al. Mantle cell lymphoma. A clinicopathologic study of 68 cases from the Nebraska lymphoma study group. Am J Hematol. 2000;64:190–6.

    Article  CAS  PubMed  Google Scholar 

  160. Hoster E, Rosenwald A, Berger F, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle cell lymphoma: results from randomized trials of the European mantle cell lymphoma network. J Clin Oncol. 2016;34:1386–94.

    Article  CAS  PubMed  Google Scholar 

  161. Yin CC, Medeiros LJ, Cromwell CC, et al. Sequence analysis proves clonal identity in five patients with typical and blastoid mantle cell lymphoma. Mod Pathol. 2007;20:1–7.

    Article  CAS  PubMed  Google Scholar 

  162. Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schlette E, Fu K, Medeiros LJ. CD23 expression in mantle cell lymphoma: clinicopathologic features of 18 cases. Am J Clin Pathol. 2003;120:760–6.

    Article  CAS  PubMed  Google Scholar 

  164. Onciu M, Schlette E, Medeiros LJ, et al. Cytogenetic findings in mantle cell lymphoma cases with a high level of peripheral blood involvement have a distinct pattern of abnormalities. Am J Clin Pathol. 2001;116:886–92.

    Article  CAS  PubMed  Google Scholar 

  165. Hao S, Sanger W, Onciu M, et al. Mantle cell lymphoma with 8q24 chromosomal abnormalities: a report of 5 cases with blastoid features. Mod Pathol. 2002;15:1266–72.

    Article  PubMed  Google Scholar 

  166. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–97.

    Article  CAS  PubMed  Google Scholar 

  167. Martinez N, Camacho FI, Algara P, et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res. 2003;63:8226–32.

    CAS  PubMed  Google Scholar 

  168. Determann O, Hoster E, Ott G, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL network and the German low grade lymphoma study group. Blood. 2008;111:2385–7.

    Article  CAS  PubMed  Google Scholar 

  169. Garcia M, Romaguera JE, Inamdar KV, et al. Proliferation predicts failure-free survival in mantle cell lymphoma patients treated with rituximab plus hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with rituximab plus high-dose methotrexate and cytarabine. Cancer. 2009;115:1041–8.

    Article  CAS  PubMed  Google Scholar 

  170. Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142:149–65.

    Article  CAS  PubMed  Google Scholar 

  171. Rummel MJ, de Vos S, Hoelzer D, et al. Altered apoptosis pathways in mantle cell lymphoma. Leuk Lymphoma. 2004;45:49–54.

    Article  CAS  PubMed  Google Scholar 

  172. Beà S, Valdés-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110:18250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhang J, Jima D, Moffitt AB, et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014;123:2988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Salaverria I, Royo C, Carvajal-Cuenca A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121:1394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Stein H, Warnke RA, Chan WC, et al. Diffuse large B-cell lymphoma, not otherwise specified. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 233–7.

    Google Scholar 

  176. de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and Burkitt lymphoma. Hematol Oncol Clin North Am. 2009;23:781–827.

    Article  Google Scholar 

  177. Lopez-Guillermo A, Colomo L, Jimenez M, et al. Diffuse large B-cell lymphoma: clinical and biological characterization and outcome according to the nodal or extranodal primary origin. J Clin Oncol. 2005;23:2797–804.

    Article  PubMed  Google Scholar 

  178. Talaulikar D, Shadbolt B, Bell J, et al. Clinical role of flow cytometry in redefining bone marrow involvement in diffuse large B-cell lymphoma (DLBCL)—a new perspective. Histopathology. 2008;52:340–7.

    Article  CAS  PubMed  Google Scholar 

  179. Chigrinova E, Mian M, Scandurra M, et al. Diffuse large B-cell lymphoma with concordant bone marrow involvement has peculiar genomic profile and poor clinical outcome. Hematol Oncol. 2011;29:38–41.

    Article  PubMed  Google Scholar 

  180. Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116:2040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Anonymous. A predictive model for aggressive non-Hodgkin’s lymphoma. The international non-Hodgkin’s lymphoma prognostic factors project. N Engl J Med. 1993;329:987–94.

    Article  Google Scholar 

  182. Engelherd M, Brittinger G, Huhn D, et al. Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: distinction of centroblastic and immunoblastic lymphomas is a significant prognostic factor. Blood. 1997;89:2291–7.

    Google Scholar 

  183. Ott G, Ziepert M, Klapper W, et al. Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL. Blood. 2010;116:4916–25.

    Article  CAS  PubMed  Google Scholar 

  184. Horn H, Staiger AM, Vöhringer M, et al. Diffuse large B-cell lymphomas of immunoblastic type are a major reservoir for MYC-IGH translocations. Am J Surg Pathol. 2015;39:61–6.

    Article  PubMed  Google Scholar 

  185. Yamaguchi M, Nakamura N, Suzuki R, et al. De novo CD5+ diffuse large B-cell lymphoma: results of a detailed clinicopathological review in 120 patients. Haematologica. 2008;93:1195–202.

    Article  PubMed  Google Scholar 

  186. Xu-Monette ZY, Tu M, Jabbar KJ, et al. Clinical and biological significance of de novo CD5+ diffuse large B-cell lymphoma in western countries. Oncotarget. 2015;6:5615–33.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ok CY, Xu-Monette ZY, Tzankov A, et al. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy: a report from the international DLBCL rituximab-CHOP consortium program. Cancer. 2014;120:1818–29.

    Article  CAS  PubMed  Google Scholar 

  188. Ruzinova MB, Caron T, Rodig SJ. Altered subcellular localization of c-Myc protein identifies aggressive B-cell lymphomas harboring a c-MYC translocation. Am J Surg Pathol. 2010;34:882–91.

    Article  PubMed  Google Scholar 

  189. Wang XJ, Medeiros LJ, Lin P, et al. MYC cytogenetic status correlates with expression and has prognostic significance in patients with MYC/BCL2 protein double-positive diffuse large B-cell lymphoma. Am J Surg Pathol. 2015;39:1250–8.

    Article  PubMed  Google Scholar 

  190. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68–74.

    Article  CAS  PubMed  Google Scholar 

  191. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. N Engl J Med. 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  192. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–82.

    Article  CAS  PubMed  Google Scholar 

  195. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunostain algorithum classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15:5494–502.

    Article  CAS  PubMed  Google Scholar 

  196. Visco C, Li Y, Xu-Monette ZY, Miranda RN, et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the international DLBCL rituximab-CHOP consortium program study. Leukemia. 2012;26:2103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wilson WH, Jung SH, Porcu P, et al. A cancer and leukemia group B multi-center study of DA-EPOCH-rituximab in untreated diffuse large B-cell lymphoma with analysis of outcome by molecular subtype. Haematologica. 2012;97:758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Niitsu N, Okamoto M, Miura I, et al. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia. 2009;23:777–83.

    Article  CAS  PubMed  Google Scholar 

  199. Kanungo A, Medeiros LJ, Abruzzo LV, et al. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol. 2006;19:25–33.

    Article  CAS  PubMed  Google Scholar 

  200. Wang W, Hu S, Lu X, et al. Triple-hit B-cell lymphoma with MYC, BCL2, and BCL6 translocations/rearrangements: clinicopathologic features of 11 cases. Am J Surg Pathol. 2015;39:1132–9.

    Article  PubMed  Google Scholar 

  201. Copie-Bergman C, Cuillière-Dartigues P, Baia M, et al. MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood. 2015;126:2466–74.

    Article  CAS  PubMed  Google Scholar 

  202. Li S, Weiss VL, Wang XJ, et al. High-grade B-cell lymphoma with MYC rearrangement and without BCL2 and BCL6 rearrangements is associated with high P53 expression and a poor prognosis. Am J Surg Pathol. 2016;40:253–61.

    PubMed  Google Scholar 

  203. Young KH, Leroy K, Møller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112:3088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412:341–6.

    Article  CAS  PubMed  Google Scholar 

  205. Morin RD, Assouline S, Alcaide M, et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin Cancer Res. 2015;22:2290–300.

    Article  PubMed  CAS  Google Scholar 

  206. De Wolf-Peeters C, Delabie J, Campo E, et al. T-cell/histiocyte-rich large B-cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 238–9.

    Google Scholar 

  207. Abramson JS. T-cell/histiocyte-rich B-cell lymphoma: biology, diagnosis, and management. Oncologist. 2006;11:384–92.

    Article  PubMed  Google Scholar 

  208. El Weshi A, Akhtar S, Mourad WA, et al. T-cell/histiocyte-rich B-cell lymphoma: clinical presentation, management and prognostic factors: report on 61 patients and review of literature. Leuk LymphomaI. 2007;48:1764–73.

    Article  Google Scholar 

  209. Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161:1861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Van Loo P, Tousseyn T, Vanhentenrijk V, et al. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response. Haematologica. 2010;95:440–8.

    Article  PubMed  CAS  Google Scholar 

  211. Treetipsatit J, Metcalf RA, Warnke RA, et al. Large B-cell lymphoma with T-cell-rich background and nodules lacking follicular dendritic cell meshworks: description of an insufficiently recognized variant. Hum Pathol. 2015;46:74–83.

    Article  PubMed  Google Scholar 

  212. Katzenstein ALA, Carrington CB, Liebow AA. Lymphomatoid granulomatosis: a clinicopathologic study of 152 cases. Cancer. 1979;43:360–73.

    Article  CAS  PubMed  Google Scholar 

  213. Pittaluga S, Wilson WH, Jaffe ES, et al. Lymphomatoid granulomatotsis. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 247–9.

    Google Scholar 

  214. Gaulard P, Harris NL, Pileri S, et al. Primary mediastinal (thymic) large B-cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 250–1.

    Google Scholar 

  215. Todeschini G, Secchi S, Morra E, et al. Primary mediastinal large B-cell lymphoma (PMLBCL): long-term results from a retrospective multicentre Italian experience in 138 patients treated with CHOP or MACOP-B/VACOP-B. Br J Cancer. 2004;90:372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130:691–9.

    Article  PubMed  Google Scholar 

  217. Soumerai JD, Hellmann MD, Feng Y, et al. Treatment of primary mediastinal B-cell lymphoma with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone is associated with a high rate of primary refractory disease. Leuk Lymphoma. 2014;55:538–43.

    Article  CAS  PubMed  Google Scholar 

  218. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368:1408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cazals-Hatem D, Lepage E, Brice P, et al. Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 144 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des lymphomas de l’Adulte”) study. Am J Surg Pathol. 1996;20:877–88.

    Article  CAS  PubMed  Google Scholar 

  220. Pileri SA, Gaidano G, Zinzani PL, et al. Primary mediastinal B-cell lymophoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol. 2003;162:243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hoeller S, Zihler D, Zlobec I, et al. BOB.1, CD79a and cyclin E are the most appropriate markers to discriminate classical Hodgkin’s lymphoma from primary mediastinal large B-cell lymphoma. Histopathology. 2010;56:217–28.

    Article  PubMed  Google Scholar 

  222. Weinberg OK, Rodig SJ, Pozdnyakova O, et al. Surface light chain expression in primary mediastinal large B-cell lymphomas by multiparameter flow cytometry. Am J Clin Pathol. 2015;144:635–41.

    Article  CAS  PubMed  Google Scholar 

  223. Copie-Bergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172–80.

    Article  PubMed  Google Scholar 

  224. Li KD, Miles R, Tripp SR, et al. Clinicopathologic evaluation of MYC expression in primary mediastinal (thymic) large B-cell lymphoma. Am J Clin Pathol. 2015;143:598–604.

    Article  PubMed  Google Scholar 

  225. Dorfman DM, Shahsafaei A, Alonso MA. Utility of CD200 immunostaining in the diagnosis of primary mediastinal large B cell lymphoma: comparison with MAL, CD23, and other markers. Mod Pathol. 2012;25:1637–43.

    Article  CAS  PubMed  Google Scholar 

  226. Kimm LR, deLeeuw RJ, Savage KJ, et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosom Cancer. 2007;46:1090–7.

    Article  CAS  PubMed  Google Scholar 

  227. Twa DD, Chan FC, Ben-Neriah S, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123:2062–5.

    Article  CAS  PubMed  Google Scholar 

  228. Mottok A, Renne C, Seifert M, et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood. 2009;114:4503–6.

    Article  CAS  PubMed  Google Scholar 

  229. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yuan J, Wright G, Rosenwald A, et al. Identification of primary mediastinal large B-cell lymphoma at nonmediastinal sites by gene expression profiling. Am J Surg Pathol. 2015;39:1322–30.

    Article  PubMed  Google Scholar 

  231. Nakamura S, Ponzoni M, Campo E. Intravascular large B-cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 252–3.

    Google Scholar 

  232. Nakajima S, Ohshima K, Kyogoku M, et al. A case of intravascular large B-cell lymphoma with atypical clinical manifestations and analysis of CXCL12 and CXCR4 expression. Arch Dermatol. 2010;146:686–7.

    Article  PubMed  Google Scholar 

  233. Ponzoni M, Arrigoni G, Gould VE, et al. Lack of CD 29 (beta1 integrin) and CD 54 (ICAM-1) adhesion molecules in intravascular lymphomatosis. Hum Pathol. 2000;31:220–6.

    Article  CAS  PubMed  Google Scholar 

  234. Shimada K, Kinoshita T, Naoe T, et al. Presentation and management of intravascular large B-cell lymphoma. Lancet Oncol. 2009;10:895–902.

    Article  PubMed  Google Scholar 

  235. Balkema C, Meersseman W, Hermans G, et al. Usefulness of FDG-PET to diagnose intravascular lymphoma with encephalopathy and renal involvement. Acta Clin Belg. 2008;63:185–9.

    Article  CAS  PubMed  Google Scholar 

  236. Estalilla OC, Koo CH, Brynes RK, et al. Intravascular large B-cell lymphoma. A report of five cases initially diagnosed by bone marrow biopsy. Am J Clin Pathol. 1999;112:248–55.

    Article  CAS  PubMed  Google Scholar 

  237. DiGiuseppe JA, Hartmann DP, Freter C, et al. Molecular detection of bone marrow involvement in intravascular lymphomatosis. Mod Pathol. 1997;10:33–7.

    CAS  PubMed  Google Scholar 

  238. Delsol G, Campo E, Gascoyne RD. ALK-positive large B-cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 254–5.

    Google Scholar 

  239. Laurent C, Do C, Gascoyne RD, et al. Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27:4211–6.

    Article  PubMed  Google Scholar 

  240. Valera A, Colomo L, Martínez A, et al. ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol. 2013;26:1329–37.

    Article  CAS  PubMed  Google Scholar 

  241. Stein H, Harris NL, Campo E. Plasmablastic lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 256–7.

    Google Scholar 

  242. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    CAS  PubMed  Google Scholar 

  243. Loghavi S, Alayed K, Aladily TN, et al. Stage, age, and EBV status impact outcomes of plasmablastic lymphoma patients: a clinicopathologic analysis of 61 patients. J Hematol Oncol. 2015;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Vega F, Chang CC, Mederios LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18:806–15.

    Article  PubMed  Google Scholar 

  245. Montes-Moreno S, Gonzalez-Medina AR, Rodriguez Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–9.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Bogusz AM, Seegmiller AC, Garcia R, et al. Plasmablastic lymphomas with MYC/IgH rearrangement: report of three cases and review of the literature. Am J Clin Pathol. 2009;132:597–605.

    Article  CAS  PubMed  Google Scholar 

  247. Chapman J, Gentles AJ, Sujoy V, et al. Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia. 2015;29:2270–3.

    Article  CAS  PubMed  Google Scholar 

  248. Said J, Cesarman E. Primary effusion lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 260–1.

    Google Scholar 

  249. Fan W, Bubman D, Chadburn A, et al. Distinct subsets of primary effusion lymphoma can be identified based on their cellular gene expression profile and viral association. J Virol. 2005;79:1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chadburn A, Hyjek E, Mathew S, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28:1401–16.

    Article  PubMed  Google Scholar 

  251. Guillet S, Gérard L, Meignin V, et al. Classic and extracavitary primary effusion lymphoma in 51 HIV-infected patients from a single institution. Am J Hematol. 2016;91:233–7.

    Article  CAS  PubMed  Google Scholar 

  252. Horenstein MG, Nador RG, Chadburn A, et al. Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpes virus/human herpes virus-8. Blood. 1997;90:1186–91.

    CAS  PubMed  Google Scholar 

  253. Alexanian S, Said J, Lones M, et al. KSHV/HHV8-negative effusion-based lymphoma, a distinct entity associated with fluid overload states. Am J Surg Pathol. 2013;37:241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Mullaney BP, Ng VL, Herndier BG, et al. Comparative genomic analyses of primary effusion lymphoma. Arch Pathol Lab Med. 2000;124:824–6.

    CAS  PubMed  Google Scholar 

  255. Klein U, Gloghini A, Chadburn A, et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood. 2003;101:4115–21.

    Article  CAS  PubMed  Google Scholar 

  256. Magrath IT. African Burkitt’s lymphoma: history, biology, clinical features, and treatment. Am J Pediatr Hematol Oncol. 1991;13:222–46.

    Article  CAS  PubMed  Google Scholar 

  257. Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3:182–7.

    Article  CAS  PubMed  Google Scholar 

  258. Leoncini L, Raphael M, Stein H, et al. Burkitt lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 262–4.

    Google Scholar 

  259. Murphy SB, Magrath IT. Workshop on pediatric lyphomas: current results and prospects. Ann Oncol. 1991;2(Suppl 2):219–23.

    Article  PubMed  Google Scholar 

  260. Perkins AS, Friedberg JW. (2008). Burkitt lymphoma in adults. Hematology Am Soc Hematol Educ Program pp. 341–347.

    Google Scholar 

  261. Intermesoli T, Rambaldi A, Rossi G, et al. High cure rates in Burkitt lymphoma and leukemia: a northern Italy leukemia group study of the German short intensive rituximab-chemotherapy program. Haematologica. 2013;98:1718–25.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Chuang SS, Huang WT, Hsieh PP, et al. Sporadic paediatric and adult Burkitt lymphomas share similar phenotypic and genotypic features. Histopathology. 2008;52:427–35.

    Article  PubMed  Google Scholar 

  263. Kelemen K, Braziel RM, Gatter K, et al. Immunophenotypic variations of Burkitt lymphoma. Am J Clin Pathol. 2010;134:127–38.

    Article  PubMed  Google Scholar 

  264. Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000;18:3707–21.

    Article  CAS  PubMed  Google Scholar 

  265. Klapproth K, Wirth T. Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol. 2010;149:484–97.

    Article  CAS  PubMed  Google Scholar 

  266. Onciu M, Schlette E, Zhou Y, et al. Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer. 2006;107:1084–92.

    Article  PubMed  Google Scholar 

  267. Scholtysik R, Kreuz M, Klapper W, et al. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010;95:2047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354:2419–30.

    Article  CAS  PubMed  Google Scholar 

  269. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354:2431–42.

    Article  CAS  PubMed  Google Scholar 

  270. Lenze D, Leoncini L, Hummel M, et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia. 2011;25:1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Sander S, Calado DP, Srinivasan L, et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell. 2012;22:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lin YC, Jhunjhunwala S, Benner C, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010;11:635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Salaverria I, Martin-Guerrero I, Wagener R, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123:1187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Ferreiro JF, Morscio J, Dierickx D, et al. Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern. Haematologica. 2015;100:e275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kluin PM, Harris NL, Stein H, et al. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 265–6.

    Google Scholar 

  277. Carbone A, Gloghini A, Aiello A, et al. B-cell lymphomas with features intermediate between distinct pathologic entities. From pathogenesis to pathology. Hum Pathol. 2010;41:621–31.

    Article  CAS  PubMed  Google Scholar 

  278. Li S, Lin P, Fayad LE, Lennon PA, et al. B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod Pathol. 2012;25:145–56.

    Article  CAS  PubMed  Google Scholar 

  279. Pillai RK, Sathanoori M, Van Oss SB, et al. Double-hit B-cell lymphomas with BCL6 and MYC translocations are aggressive, frequently extranodal lymphomas distinct from BCL2 double-hit B-cell lymphomas. Am J Surg Pathol. 2013;37:323–32.

    Article  PubMed  Google Scholar 

  280. Jaffe ES, Stein H, Swerdlow SH, et al. B-cell lymphoma, unclassificable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 267–8.

    Google Scholar 

  281. Wilson WH, Pittaluga S, Nicolae A, et al. A prospective study of mediastinal gray-zone lymphoma. Blood. 2014;124:1563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Borowitz MJ, Chan JKC. T lymphoblastic leukemia/lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 176–8.

    Google Scholar 

  283. Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149:653–68.

    Article  CAS  PubMed  Google Scholar 

  284. Nathwani BN, Diamond LW, Winberg CD, et al. Lymphoblastic lymphoma: a clinicopathologic study of 95 patients. Cancer. 1981;48:2347–57.

    Article  CAS  PubMed  Google Scholar 

  285. Han X, Bueso-Ramos CE. Precursor T-cell lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol. 2007;127:528–44.

    Article  CAS  PubMed  Google Scholar 

  286. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Hashimoto M, Yamashita Y, Mori N. (2002). Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias.

    Google Scholar 

  288. Pilozzi E, Muller-Hermelink HK, Falini B, et al. Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol. 1999;188:267–70.

    Article  CAS  PubMed  Google Scholar 

  289. Graux C, Cools J, Michaux L, et al. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510.

    Article  CAS  PubMed  Google Scholar 

  290. Marks DI, Paietta EM, Moorman AV, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trail (UKALL XII/ECOG 2993). Blood. 2009;114:5136–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Ferrando AA. (2009). The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program. pp. 353–61.

    Google Scholar 

  292. Tosello V, Mansour MR, Barnes K, et al. WT1 mutations in T-ALL. Blood. 2009;114:1038–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Lahortiga I, De Keersmaecker K, Van Vilerberghe P, et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39:593–5.

    Article  CAS  PubMed  Google Scholar 

  294. Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosom Cancer. 2010;49:299–308.

    CAS  PubMed  Google Scholar 

  295. Kleppe M, Lahortiga I, El Chaar T, et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42:530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.

    Article  CAS  PubMed  Google Scholar 

  297. Haydu JE, Ferrando AA. Early T-cell precursor acute lymphoblastic leukaemia. Curr Opin Hematol. 2013;20:369–73.

    Article  CAS  PubMed  Google Scholar 

  298. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Ohshima K, Jaffe ES, Kikuchi M. Adult T-cell leukemia/lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 281–4.

    Google Scholar 

  300. Satake M, Yamaguchi K, Tadokoro K. Current prevalence of HTLV-1 in Japan as determined by screening of blood donors. J Med Virol. 2012;84:327–35.

    Article  PubMed  Google Scholar 

  301. Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood. 1995;86:3619–39.

    CAS  PubMed  Google Scholar 

  302. Carneiro-Proietti AB, Amaranto-Damasio MS, Leal-Horiguchi CF, et al. (2014). Mother-to-child transmission of human T-cell lymphotropic viruses-1/2: what we know, and what are the gaps in understanding and preventing this route of infection. J Pediatric Infect Dis Soc Suppl 1:S.

    Google Scholar 

  303. Suzumiya J, Ohshima K, Tamura K, et al. The international prognostic index predicts outcome in aggressive adult T-cell leukemia/lymphoma: analysis of 126 patient from the international peripheral T-cell lymphoma project. Ann Oncol. 2009;20:715–21.

    Article  CAS  PubMed  Google Scholar 

  304. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. A report from the lymphoma study group (1984–1987). Br J Haematol. 1991;79:428–37.

    Article  CAS  PubMed  Google Scholar 

  305. Tobinai K. Current management of adult T-cell leukemia/lymphoma. Oncology. 2009;23:1250–6.

    PubMed  Google Scholar 

  306. Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci. 2007;98:772–8.

    Article  CAS  PubMed  Google Scholar 

  307. Karube K, Aoki R, Sugita Y, et al. The relationship of FOXP3 expression and clinicopathological characteristics in adult T-cell leukemia/lymphoma. Mod Pathol. 2008;21:617–25.

    Article  CAS  PubMed  Google Scholar 

  308. Itoyama T, Chaganti RS, Yamada Y, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97:3612–20.

    Article  CAS  PubMed  Google Scholar 

  309. Oshiro A, Tagawa H, Ohshima K, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood. 2006;107:4500–7.

    Article  CAS  PubMed  Google Scholar 

  310. Shimamoto Y, Suga K, Shibata K, et al. Clinical importance of extraordinary integration patterns of human T-cell lymphotrophic virus type I proviral DNA in adult T-cell leukemia/lymphoma. Blood. 1994;84:853–8.

    CAS  PubMed  Google Scholar 

  311. Ohshima K, Suzumiya J, Sato K, et al. Nodal T-cell lymphoma in a HTLV-I-endemic area: proviral HTLV-I DNA, histological classification and clinical evaluation. Br J Haematol. 1998;101:703–11.

    Article  CAS  PubMed  Google Scholar 

  312. Choi YL, Tsukasaki K, O’Neill MC, et al. A genomic analysis of adult T-cell leukemia. Oncogene. 2007;26:1245–55.

    Article  CAS  PubMed  Google Scholar 

  313. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15.

    Article  CAS  PubMed  Google Scholar 

  314. Chan JKC, Quintanilla-Martinez K, Ferry JA, et al. Extranodal NK/T-cell lymphoma, nasal type. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 285–8.

    Google Scholar 

  315. Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the international peripheral T-cell lymphoma project. Blood. 2009;113:3931–7.

    Article  CAS  PubMed  Google Scholar 

  316. Kim TM, Heo DS. Extranodal NK/T-cell lymphoma, nasal type: new staging system and treatment strategies. Cancer Sci. 2009;100:2242–8.

    Article  CAS  PubMed  Google Scholar 

  317. Liang R. Advances in the management and monitoring of extranodal NK/T-cell lymphoma, nasal type. Br J Haematol. 2009;147:13–21.

    Article  CAS  PubMed  Google Scholar 

  318. Wang ZY, Li YX, Wang WH, et al. Primary radiotherapy showed favorable outcome in treating extranodal nasal-type NK/T-cell lymphoma in children and adolescents. Blood. 2009;114:4771–6.

    Article  CAS  PubMed  Google Scholar 

  319. Li S, Feng X, Li X, et al. Extranodal NK/T-cell lymphoma, nasal type: a report of 73 cases at MD Anderson Cancer Center. Am J Surg Pathol. 2013;37:14–23.

    Article  CAS  PubMed  Google Scholar 

  320. Oshima K, Suzumiya J, Shimazaki K, et al. Nasal T/NK cell lymphomas commonly express perforin and Fas ligand: important mediators of tissue damage. Histopathology. 1997;31:444–50.

    Article  Google Scholar 

  321. Kim SJ, Kim BS, Choi CW, et al. Ki-67 expression is predictive of prognosis in patients with stage I/II extranodal NK/T-cell lymphoma, nasal type. Ann Oncol. 2007;18:1382–7.

    Article  CAS  PubMed  Google Scholar 

  322. Ko YH, Choi KE, Han JH, et al. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46:85–91.

    Article  CAS  PubMed  Google Scholar 

  323. Huang Y, de Reynies A, de Leval L, et al. Gene expresion profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115:1226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23:1139–51.

    Article  CAS  PubMed  Google Scholar 

  325. Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol. 2013;26:57–74.

    Article  CAS  PubMed  Google Scholar 

  326. Quintanilla-Martinez L, Kremer M, Keller G, et al. p53 mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol. 2001;159:2095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Isaascon PG, Chott A, Oh G, et al. Enteropathy-associated T-cell lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 289–91.

    Google Scholar 

  328. Gale J, Simmonds PD, Mead GM, et al. Enteropathy-type intestinal T-cell lymphoma: clinical features and treatment of 31 patients in a single center. J Clin Oncol. 2000;18:795–803.

    Article  CAS  PubMed  Google Scholar 

  329. Smedby KE, Akeman M, Hildebrand H, et al. Malignant lymphomas in celiac disease: evidence of increased risks for lymphoma types other than enteropathy-type T cell lymphoma. Gut. 2005;54:54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Zettl A, deLeeuw R, Haralambieva E, et al. Enteropathy-type T-cell lymphoma. Am J Clin Pathol. 2007;127:701–6.

    Article  PubMed  Google Scholar 

  331. Bagdi E, Diss TC, Munson P, et al. Mucosal intra-epithelial lymphocytes in enteropathy-associated T-cell lymphoma, ulcerative jejunitis, and refractory celiac disease constitute a neoplastic population. Blood. 1999;94:260–4.

    CAS  PubMed  Google Scholar 

  332. Ko YH, Karnan S, Kim KM, et al. Enteropathy-associated T-cell lymphoma-a clinicopathologic and array comparative genomic hybridization study. Hum Pathol. 2010;41:1231–7.

    Article  CAS  PubMed  Google Scholar 

  333. Tan SY, Chuang SS, Tang T, et al. Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8αα phenotype. Leukemia. 2013;27:1688–96.

    Article  CAS  PubMed  Google Scholar 

  334. Tomita S, Kikuti YY, Carreras J, et al. Genomic and immunohistochemical profiles of enteropathy-associated T-cell lymphoma in Japan. Mod Pathol. 2015;28:1286–96.

    Article  CAS  PubMed  Google Scholar 

  335. Chan JK, Chan AC, Cheuk W, et al. Type II enteropathy-associated T-cell lymphoma: a distinct aggressive lymphoma with frequent γδ T-cell receptor expression. Am J Surg Pathol. 2011;35:1557–69.

    Article  PubMed  Google Scholar 

  336. Küçük C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2014;6:6025.

    Article  CAS  Google Scholar 

  337. Gaulard P, Jaffe ES, Krenais L, et al. Hepatosplenic T-cell lymphoma. In: WHO classification of Tumours of Haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 292–3.

    Google Scholar 

  338. Yabe M, Medeiros LJ, Tang G, et al. Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol. 2016;40:676–88.

    Article  PubMed  Google Scholar 

  339. Tripodo C, Iannitto E, Florena AM, et al. Gamma-delta T-cell lymphomas. Nat Rev Clin Oncol. 2009;6:707–17.

    Article  PubMed  Google Scholar 

  340. Tanase A, Schmitz N, Stein H, et al. Allogeneic and autologous stem cell transplantation for hepatosplenic T-cell lymphoma: a retrospective study of the EBMT lymphoma working party. Leukemia. 2015;29:686–8.

    Article  CAS  PubMed  Google Scholar 

  341. Vega F, Medeiros LJ, Gaulard P. Hepatosplenic and other gammadelta T-cell lymphomas. Am J Clin Pathol. 2007;127:869–80.

    Article  CAS  PubMed  Google Scholar 

  342. Yabe M, Medeiros LJ, Tang G, et al. Dyspoietic changes associated with hepatosplenic T-cell lymphoma are not a manifestation of a myelodysplastic syndrome: analysis of 25 patients. Hum Pathol. 2016;50:109–17.

    Article  CAS  PubMed  Google Scholar 

  343. Macon WR, Levy NB, Kurtin PJ, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphoma. Am J Surg Pathol. 2001;25:285–96.

    Article  CAS  PubMed  Google Scholar 

  344. Alonsozana EL, Stamberg J, Kumar D, et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic gammadelta T cell lymphoma. Leukemia. 1997;11:1367–72.

    Article  CAS  PubMed  Google Scholar 

  345. Nicolae A, Xi L, Pittaluga S, et al. Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas. Leukemia. 2014;28:2244–8.

    Article  CAS  PubMed  Google Scholar 

  346. Pileri SA, Weisenberger DD, Sng I, et al. Peripheral T-cell lymphoma, not otherwise specified. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 306–8.

    Google Scholar 

  347. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.

    Article  PubMed  Google Scholar 

  348. Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood. 2004;103:2474–9.

    Article  CAS  PubMed  Google Scholar 

  349. Savage KJ, Ferreri AJ, Zinzani PL, et al. Peripheral T-cell lymphoma--not otherwise specified. Crit Rev Oncol Hematol. 2011;79:321–9.

    Article  PubMed  Google Scholar 

  350. Kojima H, Hasegawa Y, Suzukawa K, et al. Clinicopathological features and prognostic factors of Japanese patients with “peripheral T-cell lymphoma, unspecified” diagnosed according to the WHO classification. Leuk Res. 2004;28:1287–92.

    Article  PubMed  Google Scholar 

  351. Geissinger E, Odenwald T, Lee SS, et al. Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch. 2004;445:334–43.

    Article  PubMed  Google Scholar 

  352. Rudiger T, Ichinohasama R, Ott MM, et al. Peripheral T-cell lymphoma with distinct perifollicular growth pattern: a distinct subtype of T-cell lymphoma? Am J Surg Pathol. 2000;24:117–22.

    Article  CAS  PubMed  Google Scholar 

  353. Asano N, Suzuki R, Ohshima K, et al. Linkage of expression of chemokine receptors (CXCR3 and CCR4) and cytotoxic molecules in peripheral T cell lymphoma, not otherwise specified and ALK-negative anaplastic large cell lymphoma. Int J Hematol I. 2010;91:426–35.

    Article  CAS  Google Scholar 

  354. Lepretre S, Buchonnet G, Stamatoullas A, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117:71–9.

    Article  CAS  PubMed  Google Scholar 

  355. Thoms C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosom Cancer. 2007;46:37–44.

    Article  CAS  Google Scholar 

  356. Nelson M, Horsman DE, Weisenburger DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141:461–9.

    Article  CAS  PubMed  Google Scholar 

  357. Hartmann S, Gesk S, Scholtysik R, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol. 2010;148:402–12.

    Article  PubMed  Google Scholar 

  358. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115:1026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123:2915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Hu S, Young KH, Konoplev SN, et al. Follicular T-cell lymphoma: a member of an emerging family of follicular helper T-cell derived T-cell lymphomas. Hum Pathol. 2012;43:1789–98.

    Article  CAS  PubMed  Google Scholar 

  362. Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33:682–90.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120:1466–9.

    Article  CAS  PubMed  Google Scholar 

  364. Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5.

    Article  CAS  PubMed  Google Scholar 

  365. Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119:1901–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Streubel B, Vinatzer U, Willheim M, et al. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20:313–8.

    Article  CAS  PubMed  Google Scholar 

  367. Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2013;37:1456–7.

    Article  PubMed  Google Scholar 

  368. Dogan A, Gaulard P, Jaffe ES, et al. Angioimmunoblastic T-cell lymphoma. In: WHO classification of Tumours of Haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 309–11.

    Google Scholar 

  369. Mourad N, Mounier N, Briere J, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2008;111:4463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Dogan A, Ngu LS, Ng SH, et al. Pathology and clinical features of angioimmunoblastic T-cell lymphoma after successful treatment with thalidomide. Leukemia. 2005;19:873–5.

    Article  CAS  PubMed  Google Scholar 

  371. Bruns I, Fox F, Reinecke P, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19:1993–5.

    Article  CAS  PubMed  Google Scholar 

  372. Federico M, Rudiger T, Bellei M, et al. Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol. 2013;31:240–6.

    Article  CAS  PubMed  Google Scholar 

  373. Attygalle AD, Kyriakou C, Dupuis J, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol. 2007;31:1077–88.

    Article  PubMed  Google Scholar 

  374. Balagué O, Martínez A, Colomo L, et al. Epstein-Barr virus negative clonal plasma cell proliferations and lymphomas in peripheral T-cell lymphomas: a phenomenon with distinctive clinicopathologic features. Am J Surg Pathol. 2007;31:1310–22.

    Article  PubMed  Google Scholar 

  375. de Leval L, Gisselbrecht C, Gaulard P. Advances in the understanding and management of angioimmunoblastic T-cell lymphoma. Br J Haematol. 2010;148:673–89.

    Article  PubMed  CAS  Google Scholar 

  376. Grogg KL, Attygalle AD, Macon WR, et al. Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol. 2006;19:1101–7.

    Article  CAS  PubMed  Google Scholar 

  377. Zhou Y, Attygalle AD, Chuang SS, et al. Angioimmunoblastic T-cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol. 2007;138:44–53.

    Article  CAS  PubMed  Google Scholar 

  378. Schlegelberger B, Zhang Y, Weber-Matthiesen K, et al. Detection of aberrant clones in nearly all cases of angioimmunoblastic lymphadenopathy with dysproteinemia-type T-cell lymphoma by combined interphase and metaphase cytogenetics. Blood. 1994;84:2640–8.

    CAS  PubMed  Google Scholar 

  379. Weiss LM, Jaffe E, Liu X, et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy type. Blood. 1992;79:1789–95.

    CAS  PubMed  Google Scholar 

  380. de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109:4952–63.

    Article  PubMed  CAS  Google Scholar 

  381. Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366:95–6.

    Article  PubMed  Google Scholar 

  382. Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123:1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Willenbrock K, Brauninger A, Hansmann ML. Frequent occurrence of B-cell lymphomas in angioimmunoblastic T-cell lymphoma and proliferation of Epstein-Barr virus-infected cells in early cases. Br J Haematol. 2007;138:733–9.

    Article  PubMed  Google Scholar 

  384. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66:848–58.

    CAS  PubMed  Google Scholar 

  385. Delsol G, Falini B, Muller-Hermelink HK, et al. Anaplastic large cell lymphoma (ALCL), ALK-positive. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 312–6.

    Google Scholar 

  386. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    CAS  PubMed  Google Scholar 

  387. Medeiros LJ, Elenitoba-Johnson KS. Anaplastic large cell lymphoma. Am J Clin Pathol. 2007;127:707–22.

    Article  PubMed  Google Scholar 

  388. Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29:4669–76.

    Article  PubMed  Google Scholar 

  389. Drakos E, Leventaki V, Schlette EJ, et al. C-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders. Am J Surg Pathol. 2007;31:447–53.

    Article  PubMed  Google Scholar 

  390. Khoury JD, Medeiros LJ, Rassidakis GZ, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. Clin Cancer Res. 2003;9:3692–9.

    CAS  PubMed  Google Scholar 

  391. Duplantier MM, Lamant L, Sabourdy F, et al. Serpin A1 is overexpressed in ALK+ anaplastic large cell lymphoma and its expression correlates with extranodal dissemination. Leukemia. 2006;20:1848–54.

    Article  CAS  PubMed  Google Scholar 

  392. Rassidakis GZ, Thomaides A, Wang S, et al. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia. 2005;19:1663–9.

    Article  CAS  PubMed  Google Scholar 

  393. Rassidakis GZ, Sarris AH, Herling M, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage. Am J Pathol. 2001;159:527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Kaneko Y, Frizzera G, Edamura S, et al. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood. 1989;73:806–13.

    CAS  PubMed  Google Scholar 

  395. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM non-Hodgkin’s lymphoma. Science. 1994;263:1281–4.

    Article  CAS  PubMed  Google Scholar 

  396. Feldman AL, Vasmatzis G, Asmann YW, et al. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma. Genes Chromosom Cancer. 2013;52:1097–102.

    Article  CAS  PubMed  Google Scholar 

  397. Cannella S, Santoro A, Bruno G, et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lyphoma. Cancer. 2007;109:2566–71.

    Article  CAS  PubMed  Google Scholar 

  398. Rassidakis GZ, Lai R, Herling M, et al. Retinoblastoma protein is frequently absent of phosphorylated in anaplastic large-cell lymphoma. Am J Pathol. 2004;164:2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Salaverria I, Bea S, Lopez-Guillermo A, et al. Genomic profliling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140:516–26.

    Article  PubMed  Google Scholar 

  400. Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007;109:2156–64.

    Article  CAS  PubMed  Google Scholar 

  401. Liang X, Branchford B, Greffe B, et al. Dual ALK and MYC rearrangements leading to an aggressive variant of anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2013;35:e209–13.

    Article  PubMed  Google Scholar 

  402. Moritake H, Shimonodan H, Marutsuka K, et al. C-MYC rearrangement may induce an aggressive phenotype in anaplastic lymphoma kinase positive anaplastic large cell lymphoma: identification of a novel fusion gene ALO17/C-MYC. Am J Hematol. 2011;86:75–8.

    Article  CAS  PubMed  Google Scholar 

  403. Mason DY, Harris NL, Delsol G, et al. Anaplastic large cell lymphoma, ALK-negative. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 317–9.

    Google Scholar 

  404. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124:1473–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  405. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117:915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Alonso A, Merlo JJ, Na S, et al. Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR). J Biol Chem. 2002;277:5524–8.

    Article  CAS  PubMed  Google Scholar 

  407. Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120:2280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32:114–20.

    Article  PubMed  Google Scholar 

  409. Roden AC, Macon WR, Keeney GL, et al. Seroma-associated primary anaplastic large-cell lymphoma adjacent to breat implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol. 2008;21:455–63.

    Article  CAS  PubMed  Google Scholar 

  410. Aladily TN, Medeiros LJ, Amin MB, et al. Anaplastic large cell lymphoma associated with breast implants: a report of 13 cases. Am J Surg Pathol. 2014;36:1000–8.

    Article  Google Scholar 

  411. Clemens MW, Medeiros LJ, Butler CE, et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2016;34:160–8.

    Article  CAS  PubMed  Google Scholar 

  412. Jackson H, Parker F. Hodgkin’s disease. II. Pathology. N Engl J Med. 1944;231:35–44.

    Article  Google Scholar 

  413. Lukes RJ, Butler JJ. The pathology and nomenclature of Hodgkin’s disease. Cancer Res. 1968;26:1063–83.

    Google Scholar 

  414. Rappaport H, Berard CW, Butler JJ, et al. Report of the committee on histopathological criteria contributing to staging of Hodgkin’s disease. Cancer Res. 1971;31:1864–5.

    CAS  PubMed  Google Scholar 

  415. Evens AM, Hutchings M, Diehl V. Treatment of Hodgkin lymphoma: the past, present, and future. Nat Clin Pract Oncol. 2008;5:543–56.

    Article  CAS  PubMed  Google Scholar 

  416. Fanale MA, Younes A. Nodular lymphocyte predominant Hodgkin’s lymphoma. Cancer Treat Res. 2008;142:367–81.

    PubMed  Google Scholar 

  417. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.

    Article  CAS  PubMed  Google Scholar 

  418. Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385:1853–62.

    Article  CAS  PubMed  Google Scholar 

  419. Berard CW, Thomas LB, Axtell LM, et al. The relationship of histopathological subtype to clinical stage of Hodgkin’s disease at diagnosis. Cancer Res. 1971;31:1776–85.

    Google Scholar 

  420. Poppema S, Delsol G, Pileri SA, et al. Nodular lymphocyte predominant Hodgkin lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 323–5.

    Google Scholar 

  421. Lee A, LaCasce AS. Nodular lymphocyte predominant Hodgkin lymphoma. Oncologist. 2009;14:739–51.

    Article  PubMed  Google Scholar 

  422. Medeiros LJ, Greiner TC. Hodgkin’s disease. Cancer. 1995;75(Suppl):357–69.

    Article  CAS  PubMed  Google Scholar 

  423. Fan Z, Natkunam Y, Bair E, et al. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27:1346–56.

    Article  PubMed  Google Scholar 

  424. Hartmann S, Eichenauer DA, Plütschow A, et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin study group (GHSG). Blood. 2013;122:4246–52.

    Article  CAS  PubMed  Google Scholar 

  425. Marafioti T, Hummel M, Anagnostopoulos I, et al. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med. 1997;337:453–8.

    Article  CAS  PubMed  Google Scholar 

  426. Ohno T, Stribley JA, Wu G, et al. Clonality in nodular lymphocyte-predominant Hodgkin’s disease. N Engl J Med. 1997;337:459–65.

    Article  CAS  PubMed  Google Scholar 

  427. Wlodarska I, Stul M, De Wolf-Peeters C, et al. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89:965–72.

    CAS  PubMed  Google Scholar 

  428. Brune V, Tiacci E, Pfeil I, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205:2251–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Schumacher MA, Schmitz R, Brune V, et al. Mutations in the genes coding for the NF-κB regulating factors IκBα and A20 are uncommon in nodular lymphocyte-predominant Hodgkin’s lymphoma. Haematologica. 2010;95:153–7.

    Article  CAS  PubMed  Google Scholar 

  430. Anagnostopoulos I, Hansmann M-L, Franssila K, et al. European task force of lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular pattern and abundant lymphocytes. Blood. 2000;96:1889–99.

    CAS  PubMed  Google Scholar 

  431. Anagnostopoulos I, Isaacson PG, Stein H. Lymphocyte-rich classical Hodgkin lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 332–3.

    Google Scholar 

  432. Shimabukuro-Vornhagen A, Haverkamp H, Engert A, et al. Lymphocyte-rich classical Hodgkin’s lymphoma: clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s study group trials. J Clin Oncol. 2005;23:5739–45.

    Article  PubMed  Google Scholar 

  433. Nam-Cha SH, Montes-Moreno S, Salcedo MT, et al. Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod Pathol. 2009;22:1006–15.

    Article  CAS  PubMed  Google Scholar 

  434. Brauninger A, Wacker HH, Rajewsky K, et al. Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin’s lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin’s lymphoma. Cancer Res. 2003;63:1644–51.

    PubMed  Google Scholar 

  435. Stein H, Von Wasielewski R, Poppera S, et al. Nodular selerosis classical Hodgkin lymphoma. In: WHO classification of Tumours of Haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 330.

    Google Scholar 

  436. MacLennan KA, Bennett MH, Tu A, et al. Relationship of histopathologic features to survival and relapse in nodular sclerosing Hodgkin’s disease: a study of 1659 patients. Cancer. 1989;64:1686–93.

    Article  CAS  PubMed  Google Scholar 

  437. von Wasielewski S, Franklin J, Fischer R, et al. Nodular sclerosing Hodgkin disease: new grading predicts prognosis in intermediate and advanced stages. Blood. 2003;101:4063–9.

    Article  CAS  Google Scholar 

  438. Weiss LM, von Wasielewski R, Delsol G, et al. Mixed cellularity classical Hodgkin lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 331.

    Google Scholar 

  439. Benharroch D, Stein H, Peh SC. Lymphocyte-depleted classical Hodgkin lymphoma. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 334.

    Google Scholar 

  440. Klimm B, Franklin J, Stein H, et al. Lymphocyte-depleted classical Hodgkin’s lymphoma: a comprehensive analysis from the German Hodgkin study group. J Clin Oncol. 2011;29:3914–20.

    Article  PubMed  Google Scholar 

  441. Karube K, Niino D, Kimura Y, et al. Classical Hodgkin lymphoma, lymphocyte depleted type: clinicopathological analysis and prognostic comparison with other types of classical Hodgkin lymphoma. Pathol Res Pract. 2013;209:201–7.

    Article  PubMed  Google Scholar 

  442. Glaser SL, Swartz WG. Time trends in Hodgkin’s disease incidence: the role of diagnostic accuracy. Cancer. 1990;66:2196–24.

    Article  CAS  PubMed  Google Scholar 

  443. Stein H, Delsol G, Pileri SA, et al. Classical Hodgkin lymphoma, introduction. In: WHO classification of tumours of haematopoietic and lymphoid tissues. LYON: IARC; 2008. p. 326–9.

    Google Scholar 

  444. Seitz V, Hummel M, Marafioti T, et al. Detection of clonal T-cell receptor gamma chain gene rearrangements in reed-Sternberg cells of classic Hodkin’s disease. Blood. 2000;95:3020–4.

    CAS  PubMed  Google Scholar 

  445. Greaves P, Clear A, Coutinho R, et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J Clin Oncol. 2013;31:256–62.

    Article  CAS  PubMed  Google Scholar 

  446. Kapatai G, Murray P. Contribution of the Epstein-Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol. 2007;60:1342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Tilly H, Bastard C, Delastre T, et al. Cytogenetic studies in untreated Hodgkin’s disease. Blood. 1991;77:1298–304.

    CAS  PubMed  Google Scholar 

  448. Steidl C, Telenius A, Shah SP, et al. Genome-wide copy number analysis of Hodgkin reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116:418–27.

    Article  CAS  PubMed  Google Scholar 

  449. Devilard R, Bertucci F, Trempat P, et al. Gene expression profiling defines molecular subtypes of classical Hodgkin’s disease. Oncogene. 2002;21:3095–102.

    Article  CAS  PubMed  Google Scholar 

  450. Steidl C, Diepstra A, Lee T, et al. Gene expression profiling of microdissected Hodgkin reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012;120:3530–40.

    Article  CAS  PubMed  Google Scholar 

  451. Ushmorov A, Leithäuser F, Sakk O, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2006;107:2493–500.

    Article  CAS  PubMed  Google Scholar 

  452. Van Roosbroeck K, Cox L, Tousseyn T, et al. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood. 2011;117:4056–64.

    Article  PubMed  CAS  Google Scholar 

  453. Navarro A, Diaz T, Martinez A, et al. Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009;114:2945–51.

    Article  CAS  PubMed  Google Scholar 

  454. MacMahon B. Epidemiology of Hodgkin’s disease. Cancer Res. 1966;26:1189–201.

    CAS  PubMed  Google Scholar 

  455. Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. N Engl J Med. 1982;304:135–40.

    Article  Google Scholar 

  456. Gutensohn NM. Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the two disease hypothesis. Cancer Treat Rep. 1982;66:689–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jeffrey Medeiros M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Yabe, M., Jeffrey Medeiros, L. (2018). Pathology of Non-Hodgkin and Hodgkin Lymphomas. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics