Abstract
The paper describes an experiment with automatic classification of the basic types of artefacts in the synthetic speech produced by the Czech text-to-speech system using the unit selection synthesis method. The developed classifier based on the Gaussian mixture models (GMM) is solved finally as the open-set classification task due to a limited database of speech artefacts resulting from incorrectly chosen or exchanged speech units during the synthesis process. The realized experiments prove principal impact of the accuracy of determination of the speech artefact section on the final precision of the artefact type classification. From the auxiliary investigations follows a relatively great influence of the number of mixtures and the type of a covariance matrix on the output artefact classification error rate as well as on the computational complexity.
The work was supported by the Czech Science Foundation GA16-04420S (J. Matoušek, J. Přibil), by the Grant Agency of the Slovak Academy of Sciences 2/0001/17 (J. Přibil), and by the Ministry of Education, Science, Research, and Sports of the Slovak Republic VEGA 1/0905/17 (A. Přibilová).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tiomkin, S., Malah, D., Shechtman, S., Kons, Z.: A hybrid text-to-speech system that combines concatenative and statistical synthesis units. IEEE Trans. Audio Speech Lang. Proces. 19(5), 1278–1288 (2011)
Legát, M., Matoušek, J.: Identifying concatenation discontinuities by hierarchical divisive clustering of pitch contours. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 171–178. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23538-2_22
Bello, C., Ribas, D., Calvo, J.R., Ferrer, C.A.: From speech quality measures to speaker recognition performance. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 199–206. Springer, Cham (2014). doi:10.1007/978-3-319-12568-8_25
Bapat, O.A., Fastow, R.M., Olson, J.: Acoustic coprocessor for HMM based embedded speech recognition systems. IEEE Trans. Consum. Electron. 59(3), 629–633 (2013)
Campbell, W.M., Campbell, J.P., Reynolds, D.A., Singer, E., Torres-Carrasquillo, P.A.: Support vector machines for speaker and language recognition. Comput. Speech Lang. 20(2–3), 210–229 (2006)
Matza, A., Bistritz, Y.: Skew Gaussian mixture models for speaker recognition. IET Sign. Process. 8(8), 860–867 (2014)
Dileep, A.D., Sekhar, C.C.: Class-specific GMM based intermediate matching kernel for classification of varying length patterns of long duration speech using support vector machines. Speech Commun. 57, 126–143 (2014)
Tihelka, D., Kala, J., Matoušek, J.: Enhancements of Viterbi search for fast unit selection synthesis. In: Proceedings of Interspeech 2010, Makuhari, Japan, pp. 174–177 (2010)
Přibil, J., Přibilová, A., Matoušek, J.: Detection of artefacts in Czech synthetic speech based on ANOVA statistics. In: Proceedings of the 37th International Conference on Telecommunications and Signal Processing, TSP 2014, Berlin, Germany, pp. 414–418 (2014)
Přibil, J., Přibilová, A., Matoušek, J.: Experiment with GMM-based artefact localization in Czech synthetic speech. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS, vol. 9302, pp. 23–31. Springer, Cham (2015). doi:10.1007/978-3-319-24033-6_3
Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3, 72–83 (1995)
Přibil, J., Přibilová, A.: Evaluation of influence of spectral and prosodic features on GMM classification of Czech and Slovak emotional speech. EURASIP J. Audio Speech Music Process. 2013(8), 1–22 (2013)
Nabney, I.T.: Netlab pattern analysis toolbox, Release 3.3. http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads. Accessed 15 Oct 2015
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Přibil, J., Přibilová, A., Matoušek, J. (2017). Automatic Classification of Types of Artefacts Arising During the Unit Selection Speech Synthesis. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-64206-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64205-5
Online ISBN: 978-3-319-64206-2
eBook Packages: Computer ScienceComputer Science (R0)