Skip to main content

Automatic Classification of Types of Artefacts Arising During the Unit Selection Speech Synthesis

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10415))

Included in the following conference series:

  • 1550 Accesses

Abstract

The paper describes an experiment with automatic classification of the basic types of artefacts in the synthetic speech produced by the Czech text-to-speech system using the unit selection synthesis method. The developed classifier based on the Gaussian mixture models (GMM) is solved finally as the open-set classification task due to a limited database of speech artefacts resulting from incorrectly chosen or exchanged speech units during the synthesis process. The realized experiments prove principal impact of the accuracy of determination of the speech artefact section on the final precision of the artefact type classification. From the auxiliary investigations follows a relatively great influence of the number of mixtures and the type of a covariance matrix on the output artefact classification error rate as well as on the computational complexity.

The work was supported by the Czech Science Foundation GA16-04420S (J. Matoušek, J. Přibil), by the Grant Agency of the Slovak Academy of Sciences 2/0001/17 (J. Přibil), and by the Ministry of Education, Science, Research, and Sports of the Slovak Republic VEGA 1/0905/17 (A. Přibilová).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiomkin, S., Malah, D., Shechtman, S., Kons, Z.: A hybrid text-to-speech system that combines concatenative and statistical synthesis units. IEEE Trans. Audio Speech Lang. Proces. 19(5), 1278–1288 (2011)

    Article  Google Scholar 

  2. Legát, M., Matoušek, J.: Identifying concatenation discontinuities by hierarchical divisive clustering of pitch contours. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 171–178. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23538-2_22

    Chapter  Google Scholar 

  3. Bello, C., Ribas, D., Calvo, J.R., Ferrer, C.A.: From speech quality measures to speaker recognition performance. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 199–206. Springer, Cham (2014). doi:10.1007/978-3-319-12568-8_25

    Google Scholar 

  4. Bapat, O.A., Fastow, R.M., Olson, J.: Acoustic coprocessor for HMM based embedded speech recognition systems. IEEE Trans. Consum. Electron. 59(3), 629–633 (2013)

    Article  Google Scholar 

  5. Campbell, W.M., Campbell, J.P., Reynolds, D.A., Singer, E., Torres-Carrasquillo, P.A.: Support vector machines for speaker and language recognition. Comput. Speech Lang. 20(2–3), 210–229 (2006)

    Article  Google Scholar 

  6. Matza, A., Bistritz, Y.: Skew Gaussian mixture models for speaker recognition. IET Sign. Process. 8(8), 860–867 (2014)

    Article  Google Scholar 

  7. Dileep, A.D., Sekhar, C.C.: Class-specific GMM based intermediate matching kernel for classification of varying length patterns of long duration speech using support vector machines. Speech Commun. 57, 126–143 (2014)

    Article  Google Scholar 

  8. Tihelka, D., Kala, J., Matoušek, J.: Enhancements of Viterbi search for fast unit selection synthesis. In: Proceedings of Interspeech 2010, Makuhari, Japan, pp. 174–177 (2010)

    Google Scholar 

  9. Přibil, J., Přibilová, A., Matoušek, J.: Detection of artefacts in Czech synthetic speech based on ANOVA statistics. In: Proceedings of the 37th International Conference on Telecommunications and Signal Processing, TSP 2014, Berlin, Germany, pp. 414–418 (2014)

    Google Scholar 

  10. Přibil, J., Přibilová, A., Matoušek, J.: Experiment with GMM-based artefact localization in Czech synthetic speech. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS, vol. 9302, pp. 23–31. Springer, Cham (2015). doi:10.1007/978-3-319-24033-6_3

    Chapter  Google Scholar 

  11. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3, 72–83 (1995)

    Article  Google Scholar 

  12. Přibil, J., Přibilová, A.: Evaluation of influence of spectral and prosodic features on GMM classification of Czech and Slovak emotional speech. EURASIP J. Audio Speech Music Process. 2013(8), 1–22 (2013)

    Google Scholar 

  13. Nabney, I.T.: Netlab pattern analysis toolbox, Release 3.3. http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads. Accessed 15 Oct 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Přibil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Přibil, J., Přibilová, A., Matoušek, J. (2017). Automatic Classification of Types of Artefacts Arising During the Unit Selection Speech Synthesis. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64206-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64205-5

  • Online ISBN: 978-3-319-64206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics