Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137(1), 453–476 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). doi:10.1007/11962977_19
CrossRef
Google Scholar
Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive model of attack trees. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.) GameSec 2013. LNCS, vol. 8252, pp. 192–205. Springer, Cham (2013). doi:10.1007/978-3-319-02786-9_12
CrossRef
Google Scholar
Buldas, A., Stepanenko, R.: Upper bounds for adversaries’ utility in attack trees. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 98–117. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34266-0_6
CrossRef
Google Scholar
Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. Society for Industrial and Applied Mathematics, Philadelphia (2012)
CrossRef
MATH
Google Scholar
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)
CrossRef
MATH
Google Scholar
Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68103-8_5
CrossRef
Google Scholar
De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility certificates for combinatorial problems through hilbert’s nullstellensatz. J. Symb. Comput. 46(11), 1260–1283 (2011)
MathSciNet
CrossRef
MATH
Google Scholar
Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)
MathSciNet
CrossRef
MATH
Google Scholar
Hillar, C., Lim, L.-H.: Most tensor problems are np-hard. J. ACM 60(6), 4:51–45:39 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88873-4_8
CrossRef
Google Scholar
Jürgenson, A., Willemson, J.: Serial model for attack tree computations. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14423-3_9
CrossRef
Google Scholar
Jürgenson, A., Willemson, J.: On fast and approximate attack tree computations. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 56–66. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12827-1_5
Google Scholar
Lenin, A.: Reliable and Efficient Determination of the Likelihood of Rational Attacks. TUT Press, Tallinn (2015)
Google Scholar
Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). doi:10.1007/11734727_17
CrossRef
Google Scholar
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24
CrossRef
Google Scholar
Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: Sostools: Sum of squares optimization toolbox for matlab (2004)
Google Scholar
Schneier, B.: Attack trees. Dr. Dobb’s J. Softw. Tools 24(12), 21–22, 24, 26, 28–29, December 1999
Google Scholar
Smith, K.E., Kahanpää, L., Kekäläinen, P., et al.: An Invitation to Algebraic Geometry. Universitext. Springer Science + Business Media, New York (2000)
CrossRef
MATH
Google Scholar
Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–98 (1974)
MathSciNet
CrossRef
MATH
Google Scholar
Stengle, G.: A nullstellensatz and positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1994)
MathSciNet
CrossRef
MATH
Google Scholar