Skip to main content

Comparative Genomics of Soybean and Other Legumes

  • Chapter
  • First Online:
The Soybean Genome

Abstract

Comparative genomics is the leveraging of genomic data between species to understand the evolution of genomes and species. With the increasing availability of genomics resources (genomes, transcriptomes, epigenomes, proteomes, etc.), opportunities exist to explore species relationships using comparative genomics. Comparative genomics is most commonly used to determine structural and functional variation between genomes. Traditional approaches that study genomes in isolation are limiting in both the kind of questions that can be answered, as well as the transferability of knowledge between species. Herein, we will address the recent advances in comparative genomics research, specifically in legumes, and how this wealth of knowledge can further expand our understanding of biological diversity. Comparative genomics can be performed at the genic or at genomic level, for which there are numerous workflows to exploit, including gene prediction and annotation, orthologous gene relationships, building gene and species phylogenetic trees, synteny, finding lineage specific genes, and pan-genomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arendsee ZW, Li L, Wurtele ES (2014) Coming of age: orphan genes in plants. Trends Plant Sci 19:698–708

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    Article  CAS  PubMed  Google Scholar 

  • Biémont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093

    Article  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2014) The gene balance hypothesis: dosage effects in plants. Methods Mol Biol 1112:25–32

    Article  PubMed  Google Scholar 

  • Birchler JA, Albert PS, Gao Z (2008) Stability of repeated sequence clusters in hybrids of maize as revealed by FISH. Trop Plant Biol 1:34

    Article  Google Scholar 

  • Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucl Acids Res 41:W29–W33

    Article  PubMed  PubMed Central  Google Scholar 

  • Borodovsky M, Lomsadze A (2011) Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinformatics Chapter 4(Unit 4.6):1–10

    Google Scholar 

  • Borodovsky M, Peresetsky A (1994) Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy. Comput Chem 18:259–267

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Ilut D, Farmer AD, Maki SL, May GD, Singer SR, Doyle JJ (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS ONE 5:e11630

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE (2016) Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:D1181–D1188

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Pfeil BE (2000) Confirmation of shared and divergent genomes in the Glycine tabacina polyploid complex (Leguminosae) using histone H3-D sequences. Syst Bot 25:437–448

    Article  Google Scholar 

  • Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ Jr (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics Chapter 6(Unit 6.12):11–19

    Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  • Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50:627–637

    Article  PubMed  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A, Gajendran K, Grant D, Shoemaker R, Beavis WD, Waugh ME (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucl Acids Res 33:D660–D665

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Grover CE, Wendel JF (2008) Repeated big bangs and the expanding universe: directionality in plant genome size evolution. Plant Sci 174:557–562

    Article  CAS  Google Scholar 

  • Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet 127:2371–2385

    Article  PubMed  Google Scholar 

  • Kim MY, Lee S, Van K, Kim T-H, Jeong S-C, Choi I-Y, Kim D-S, Lee Y-S, Park D, Ma J (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107:22032–22037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzniar A, van Ham RC, Pongor S, Leunissen JA (2008) The quest for orthologs: finding the corresponding gene across genomes. Trends Genet 24:539–551

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Yu D, Choi H-K, Kim RW (2017) Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genomics 39:111–119

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. Plant genome diversity, vol 2. Springer, Berlin, pp 307–322

    Google Scholar 

  • Li L, Wurtele ES (2015) The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnol J 13:177–187

    Article  CAS  PubMed  Google Scholar 

  • Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-h, Zhou G, Ma J, Jiang W, Jin L-g, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zheng W, Zhu Y, Ye H, Tang B, Arendsee ZW, Jones D, Li R, Ortiz D, Zhao X, Du C, Nettleton D, Scott MP, Salas-Fernandez MG, Yin Y, Wurtele ES (2015) QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc Natl Acad Sci USA 112:14734–14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tong Y, Xing F (2016) DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Front Plant Sci 7:1791

    Google Scholar 

  • Loytynoja A (2014) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170

    Article  PubMed  Google Scholar 

  • Maughan P, Maroof MS, Buss G (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    Article  CAS  PubMed  Google Scholar 

  • Ncbi RC (2013) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 41:D8

    Article  Google Scholar 

  • Penn O, Privman E, Landan G, Graur D, Pupko T (2010) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol 27:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosado A, Raikhel NV (2010) Application of the gene dosage balance hypothesis to auxin-related ribosomal mutants in Arabidopsis. Plant Signaling Behav 5:450–452

    Article  CAS  Google Scholar 

  • Ross-Ibarra J (2007) Genome size and recombination in angiosperms: a second look. J Evol Biol 20:800–806

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC (2011) Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant cell 23:3129–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucl Acids Res 34:W435–W439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupar RM (2010) Into the wild: the soybean genome meets its undomesticated relative. Proc Natl Acad Sci USA 107:21947–21948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D’Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucl Acids Res 44:D1133–D1140

    Article  CAS  PubMed  Google Scholar 

  • Tiley GP, Burleigh JG (2015) The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 15:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Waugh M, Anderson W, Bell C, Inman J, Schilkey F, Sullivan J, May G (2001) Legume information system. NAR molecular biology database collection 80

    Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenil-Ferguson R, Ponciano JM, Burleigh JG (2016) Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms. Amer J Bot 103:1175–1186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick E. Masonbrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masonbrink, R.E., Severin, A.J., Seetharam, A.S. (2017). Comparative Genomics of Soybean and Other Legumes. In: Nguyen, H., Bhattacharyya, M. (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-64198-0_6

Download citation

Publish with us

Policies and ethics