Advertisement

Transposable Elements

Chapter
  • 882 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Transposable elements (TEs) including retrotransposons and DNA transposons are the major DNA components in soybean (Glycine max L. Merr.), accounting for approximately 60% of the soybean reference genome. The majority of soybean TEs are long terminal repeat retrotransposons that were amplified in the past a few million years (myr). Overall, the TEs were preferentially accumulated in the pericentromeric regions of all chromosomes, but different classes/superfamilies/families of TEs generally exhibited different patterns of distribution along chromosomes. Such a distribution pattern appears to be the outcome of TE insertion bias as well as natural selection purging deleterious genic TE insertions. Despite their periodic proliferation, many TEs have accumulated various deletions through unequal homologous recombination and illegitimate recombination to become “dead” copies and to counteract genome expansion caused by periodic TE amplification. The majority of intact TEs appear to be inactivated, either transcriptionally or transpositionally, by epigenetic mechanisms such as DNA methylation, histone modification, and small RNA-mediated silencing. Nevertheless, active endogenous TEs have been found and are being used to develop TE-based soybean mutants for discovery of genes underlying traits of agronomic importance.

References

  1. Aufsatz W, Mette MF, van der Winden J, Matzke AJM, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99:16499–16506CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, Sanmiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bennetzen J (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet 15:621–627CrossRefGoogle Scholar
  4. Bennetzen JL, Ma J, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144CrossRefPubMedGoogle Scholar
  6. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dietrich CR, Cui F, Packila ML, Li J, Ashlock DA, Nikolau BJ, Schnable PS (2002) Maize Mu transposons are targeted to the 59 untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716PubMedPubMedCentralGoogle Scholar
  8. Dooner HK, He L (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20:249–258CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191CrossRefPubMedPubMedCentralGoogle Scholar
  10. Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010a) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genom 11:113CrossRefGoogle Scholar
  12. Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010b) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598CrossRefPubMedGoogle Scholar
  13. Du J, Tian Z, Bowen NJ, Schmutz J, Shoemaker RC, Ma J (2010c) Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell 22:48–61CrossRefPubMedPubMedCentralGoogle Scholar
  14. Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon SB, Cregan P, Ma J (2012) Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell 24:21–32CrossRefPubMedPubMedCentralGoogle Scholar
  15. El Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, Panaud O, Meyers BC, Jackson SA (2015) A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Res 43:e84CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767CrossRefPubMedGoogle Scholar
  17. Feng YX, Moore SP, Garfinkel DJ, Rein A (2000) The genomic RNA in Ty1 virus-like particles is dimeric. J Virol 74:10819–10821CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341CrossRefPubMedGoogle Scholar
  19. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107CrossRefPubMedGoogle Scholar
  20. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84CrossRefPubMedGoogle Scholar
  21. Grandbastien MA (1992) Retroelements in higher-plants. Trends Gene 8:103–108CrossRefGoogle Scholar
  22. Grandbastien MA (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416CrossRefPubMedGoogle Scholar
  23. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N (2009) The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21:25–38CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hancock CN, Zhang F, Floyd K, Richardson AO, Lafayette P, Tucker D, Wessler SR, Parrott WA (2011) The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean. Plant Physiol 157:552–562CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hashida S, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132:1207–1216CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hirochika H (1993) Activation of tobacco retrotransposons during tissue-culture. EMBO J 12:2521–2528PubMedPubMedCentralGoogle Scholar
  28. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–368CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 11:2515–2524CrossRefGoogle Scholar
  31. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hu WS, Temin HM (1990) Retroviral recombination and reverse transcription. Science 250:1227–1233CrossRefPubMedGoogle Scholar
  33. Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJ, Matzke M (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta 1769:358–374CrossRefPubMedGoogle Scholar
  34. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  35. Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167CrossRefPubMedGoogle Scholar
  37. Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573CrossRefPubMedGoogle Scholar
  38. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedPubMedCentralGoogle Scholar
  40. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106CrossRefPubMedGoogle Scholar
  41. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:479–493CrossRefGoogle Scholar
  42. Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, Libault M, Grimwood J, Jackson SA (2015) A comparative epigenomic analysis of polyploidy-derived genes in soybean and commonbean. Plant Physiol 168:1433–1447CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kinoshita T, Miura A, Choi YH, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523CrossRefPubMedGoogle Scholar
  44. Kirchner J, Connolly CM, Sandmeyer SB (1995) Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:1488–1491CrossRefPubMedGoogle Scholar
  45. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532CrossRefPubMedGoogle Scholar
  46. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059CrossRefPubMedGoogle Scholar
  48. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  49. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370CrossRefPubMedGoogle Scholar
  50. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66CrossRefPubMedGoogle Scholar
  51. Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61CrossRefPubMedGoogle Scholar
  52. Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luo GX, Taylor J (1990) Template switching by reverse transcriptase during DNA synthesis. J Virol 64:4321–4328PubMedPubMedCentralGoogle Scholar
  54. Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci 103:383–388CrossRefPubMedGoogle Scholar
  55. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869CrossRefPubMedPubMedCentralGoogle Scholar
  56. Matzke MA, Kanno T, Huettel B, Daxinger L, Matzke AJM (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519CrossRefPubMedGoogle Scholar
  57. McClintock B (1956a) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58–74Google Scholar
  58. McClintock B (1956b) Controlling elements and the gene. Brookhaven Symp Biol 21:197–216CrossRefGoogle Scholar
  59. McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. BioEssays 25:647–656CrossRefPubMedGoogle Scholar
  60. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780CrossRefPubMedPubMedCentralGoogle Scholar
  61. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134CrossRefPubMedGoogle Scholar
  62. Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477CrossRefPubMedGoogle Scholar
  63. Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 6:895–1900Google Scholar
  65. Rhodes PR, Vodkin LO (1985) Highly structured sequence homology between an insertion element and the gene in which it resides. Proc Natl Acad Sci USA 82:493–497CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rhodes PR, Vodkin LO (1988) Organization of the Tgm family of transposable elements in soybean. Genetics 120:597–604PubMedPubMedCentralGoogle Scholar
  67. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381CrossRefPubMedPubMedCentralGoogle Scholar
  68. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768CrossRefPubMedGoogle Scholar
  69. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45CrossRefPubMedGoogle Scholar
  70. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  71. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  72. Sharma A, Schneider KL, Presting GG (2008) Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proc Natl Acad Sci USA 105:15470–15474CrossRefPubMedPubMedCentralGoogle Scholar
  73. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285CrossRefPubMedGoogle Scholar
  74. Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644CrossRefPubMedGoogle Scholar
  75. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163CrossRefPubMedPubMedCentralGoogle Scholar
  76. Takahashi R, Morita Y, Nakayama M, Kanazawac A, Abe J (2011) An active CACTA-family transposable element is responsible for flower variegation in wild soybean Glycine soja. Plant Genome 11:0028Google Scholar
  77. Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393CrossRefPubMedGoogle Scholar
  78. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  79. The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  80. Tian Z, Rizzon C, Du J, Zhu L, Bennetze JL, Jackson SA, Gaut BS, Ma J (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tian Z, Zhao M, She M, Du J, Cannon SB, Liu X, Xu X, Qi X, Li MW, Lam HM, Ma J et al (2012) Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. Plant Cell 24:4422–4436CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-I T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643CrossRefPubMedPubMedCentralGoogle Scholar
  84. Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR-retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540CrossRefPubMedGoogle Scholar
  85. Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  87. Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK (2010) Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics 184:53–63CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yan F, Di S, Takahashi R (2015) CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome 58:365–374CrossRefPubMedGoogle Scholar
  89. Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zabala G, Vodkin LO (2005) The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17:2619–2632CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zabala G, Vodkin L (2008) A putative autonomous 20.5 kb-CACTA transposon insertion in an F3’H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol 8:124CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhao M, Ma J (2013) Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 4:493–501CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J (2013) Shifts in evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J 76:211–220PubMedGoogle Scholar
  94. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69CrossRefPubMedGoogle Scholar
  95. Zou S, Voytas DF (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci USA 94:7412–7416CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AgronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations