Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 278 Accesses

Abstract

Historically single photons and sources of single photons have been instrumental in helping to explore, understand and develop new theories and devices across a range of topics in quantum mechanics and quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Clauser, Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974)

    Article  ADS  Google Scholar 

  2. H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance Fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    Article  ADS  Google Scholar 

  3. D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)

    Article  ADS  Google Scholar 

  4. J.F. Clauser, A. Shimony, Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978)

    Article  ADS  Google Scholar 

  5. A. Aspect, P. Grangier, G. Roger, Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  6. T.H. Maiman, Stimulated Optical Radiation in Ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  7. D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970)

    Article  ADS  Google Scholar 

  8. C.K. Hong, L. Mandel, Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58–60 (1986)

    Article  ADS  Google Scholar 

  9. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  10. A.L. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002)

    Article  ADS  Google Scholar 

  11. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photon 6, 225–228 (2012)

    Google Scholar 

  12. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  13. J.L. O’Brien, Optical quantum computing. Science 318, 1567–1570 (2007)

    Article  ADS  Google Scholar 

  14. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  15. D.E. Browne, T. Rudolph, Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  16. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  17. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J.G. Rarity, A. Zeilinger, H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  18. H.-K. Lo, M. Curty, K. Tamaki, Secure quantum key distribution. Nat. Photon 8, 595–604 (2014)

    Google Scholar 

  19. Networked quantum information technologies, http://nqit.ox.ac.uk/. Accessed 20 Dec 2015

  20. A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  21. Z.Y. Ou, L. Mandel, Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.R. Tapster, J.G. Rarity, P.C.M. Owens, Violation of Bell’s inequality over 4 km of optical fiber. Phys. Rev. Lett. 73, 1923–1926 (1994)

    Article  ADS  Google Scholar 

  23. A. Aspect, Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999)

    Article  ADS  Google Scholar 

  24. T.B. Pittman, J.D. Franson, Violation of Bell’s inequality with photons from independent sources. Phys. Rev. Lett. 90, 240401 (2003)

    Article  ADS  Google Scholar 

  25. A. Migdall, S.G. Polyakov, J. Fan, J.C. Beinfang (eds.), Single-photon generation and detection, in Experimental Methods in the Physical Sciences, vol. 45 (Elsevier, 2013)

    Google Scholar 

  26. R. Loudon, The Quantum Theory of Light, vol. 1, 2nd edn. (Oxford University Press, Oxford, 1973)

    Google Scholar 

  27. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, 2nd edn. (Cambridge Unviersity Press, Cambridge, 1995)

    Book  Google Scholar 

  28. A.B. U’Ren, Multi-photon state engineering for quantum information processing applications. Ph.D. thesis, University of Rochester, 2004

    Google Scholar 

  29. P.J. Mosley, Generation of heralded single photons in pure quantum states. Ph.D. thesis, University of Oxford, 2007

    Google Scholar 

  30. B.A. Bell, D.A. Herrera-Martí, M.S. Tame, D. Markham, W.J. Wadsworth, J.G. Rarity, Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5 (2014)

    Google Scholar 

  31. P.J. Mosley, J.S. Lundeen, B.J. Smith, I.A. Walmsley, Conditional preparation of single photons using parametric downconversion: a recipe for purity. New J. Phys. 10, 093011 (2008)

    Article  ADS  Google Scholar 

  32. A. McMillan, Development of an all-fibre source of heralded single photons. Ph.D. thesis, University of Bath, 2011

    Google Scholar 

  33. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, C. Silberhorn, An optimized photon pair source for quantum circuits. Opt. Express 21, 13975–13985 (2013)

    Article  ADS  Google Scholar 

  34. P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008)

    Article  ADS  Google Scholar 

  35. B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129 (2005)

    Article  ADS  Google Scholar 

  36. J. McKeever, A. Boca, A.D. Boozer, R. Miller, J.R. Buck, A. Kuzmich, H.J. Kimble, Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  Google Scholar 

  37. J. Nunn, N.K. Langford, W.S. Kolthammer, T.F.M. Champion, M.R. Sprague, P.S. Michelberger, X.-M. Jin, D.G. England, I.A. Walmsley, Enhancing multiphoton rates with quantum memories. Phys. Rev. Lett. 110, 133601 (2013)

    Article  ADS  Google Scholar 

  38. A. Kuhn, M. Hennrich, G. Rempe, Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  39. M. Hijlkema, B. Weber, H.P. Specht, S.C. Webster, A. Kuhn, G. Rempe, A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  40. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  Google Scholar 

  41. H.G. Barros, A. Stute, T.E. Northup, C. Russo, P.O. Schmidt, R. Blatt, Deterministic single-photon source from a single ion. New J. Phys. 11, 103004 (2009)

    Article  ADS  Google Scholar 

  42. A.J. Shields, Semiconductor quantum light sources. Nat. Photon 1, 215–223 (2007)

    Google Scholar 

  43. J.C. Loredo, N.A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M.A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M.P. Almeida, A.G. White, Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016)

    Article  Google Scholar 

  44. R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon 4, 632–635 (2010)

    Article  ADS  Google Scholar 

  45. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Room temperature stable single-photon source. Eur. Phys. J. D 18, 191–196 (2002)

    ADS  Google Scholar 

  46. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M.D. Lukin, Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010). pMID: 20825160

    Google Scholar 

  47. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)

    Article  ADS  Google Scholar 

  48. R. Boyd, Non-Linear Optics, 3rd edn. (Academic Press, Burlington, 2008)

    Google Scholar 

  49. S. Friberg, C.K. Hong, L. Mandel, Measurement of time delays in the parametric production of photon pairs. Phys. Rev. Lett. 54, 2011–2013 (1985)

    Article  ADS  Google Scholar 

  50. C.K. Hong, L. Mandel, Theory of parametric frequency down conversion of light. Phys. Rev. A 31, 2409–2418 (1985)

    Article  ADS  Google Scholar 

  51. J.E. Sharping, M. Fiorentino, P. Kumar, Observation of twin-beam-type quantum correlation in optical fiber. Opt. Lett. 26, 367–369 (2001)

    Article  ADS  Google Scholar 

  52. C. Kurtsiefer, M. Oberparleiter, H. Weinfurter, High-efficiency entangled photon pair collection in type-II parametric fluorescence. Phys. Rev. A 64, 023802 (2001)

    Article  ADS  Google Scholar 

  53. A.B. U’Ren, C. Silberhorn, K. Banaszek, I.A. Walmsley, Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004)

    Article  ADS  Google Scholar 

  54. T. Pittman, B. Jacobs, J. Franson, Heralding single photons from pulsed parametric down-conversion. Opt. Commun. 246, 545–550 (2005)

    Article  ADS  Google Scholar 

  55. F.A. Bovino, P. Varisco, A.M. Colla, G. Castagnoli, G.D. Giuseppe, A.V. Sergienko, Effective fiber-coupling of entangled photons for quantum communication. Opt. Commun. 227, 343–348 (2003)

    Article  ADS  Google Scholar 

  56. A.R. McMillan, J. Fulconis, M. Halder, C. Xiong, J.G. Rarity, W.J. Wadsworth, Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm. Opt. Express 17, 6156–6165 (2009)

    Article  ADS  Google Scholar 

  57. M.G. Raymer, J. Noh, K. Banaszek, I.A. Walmsley, Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity. Phys. Rev. A 72, 023825 (2005)

    Article  ADS  Google Scholar 

  58. J. Chen, A.J. Pearlman, A. Ling, J. Fan, A. Migdall, A versatile waveguide source of photon pairs for chip-scale quantum information processing. Opt. Express 17, 6727–6740 (2009)

    Article  ADS  Google Scholar 

  59. J. Fan, A. Migdall, L.J. Wang, Efficient generation of correlated photon pairs in a microstructure fiber. Opt. Lett. 30, 3368–3370 (2005)

    Article  ADS  Google Scholar 

  60. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, P. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005)

    Article  ADS  Google Scholar 

  61. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, J. Rarity, High brightness single mode source of correlated photon pairs using a photonic crystal fiber. Opt. Express 13, 7572–7582 (2005)

    Article  ADS  Google Scholar 

  62. C. Xiong, C. Monat, M. Collins, L. Tranchant, D. Petiteau, A. Clark, C. Grillet, G. Marshall, M. Steel, J. Li, L. O’Faolain, T. Krauss, B. Eggleton, Characteristics of correlated photon pairs generated in ultracompact silicon slow-light photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 18, 1676–1683 (2012)

    Article  Google Scholar 

  63. C. Xiong, M. Collins, M. Steel, T. Krauss, B. Eggleton, A. Clark, Photonic crystal waveguide sources of photons for quantum communication applications. IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015)

    Article  Google Scholar 

  64. M.J. Collins, A.S. Clark, J. He, D.-Y. Choi, R.J. Williams, A.C. Judge, S.J. Madden, M.J. Withford, M.J. Steel, B. Luther-Davies, C. Xiong, B.J. Eggleton, Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. Opt. Lett. 37, 3393–3395 (2012)

    Article  ADS  Google Scholar 

  65. J.B. Spring, P.S. Salter, B.J. Metcalf, P.C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N.K. Langford, W.S. Kolthammer, M.J. Booth, I.A. Walmsley, On-chip low loss heralded source of pure single photons. Opt. Express 21, 13522–13532 (2013)

    Article  ADS  Google Scholar 

  66. W.P. Grice, I.A. Walmsley, Spectral information and distinguishability in type-II down-conversion with a broadband pump. Phys. Rev. A 56, 1627–1634 (1997)

    Article  ADS  Google Scholar 

  67. W.P. Grice, A.B. U’Ren, I.A. Walmsley, Eliminating frequency and space-time correlations in multiphoton states. Phys. Rev. A 64, 063815 (2001)

    Article  ADS  Google Scholar 

  68. O. Cohen, J.S. Lundeen, B.J. Smith, G. Puentes, P.J. Mosley, I.A. Walmsley, Tailored Photon-Pair Generation in Optical Fibers. Phys. Rev. Lett. 102, 123603 (2009)

    Article  ADS  Google Scholar 

  69. C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, C. Silberhorn, High-performance single-photon generation with commercial-grade optical fiber. Phys. Rev. A 83, 031806 (2011)

    Article  ADS  Google Scholar 

  70. X. Li, P.L. Voss, J.E. Sharping, P. Kumar, Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)

    Article  ADS  Google Scholar 

  71. C. Söller, B. Brecht, P.J. Mosley, L.Y. Zang, A. Podlipensky, N.Y. Joly, P.S.J. Russell, C. Silberhorn, Bridging visible and telecom wavelengths with a single-mode broadband photon pair source. Phys. Rev. A 81, 031801 (2010)

    Article  ADS  Google Scholar 

  72. B.J. Smith, P. Mahou, O. Cohen, J.S. Lundeen, I.A. Walmsley, Photon pair generation in birefringent optical fibers. Opt. Express 17, 23589–23602 (2009)

    Article  ADS  Google Scholar 

  73. J.H. Shapiro, F.N. Wong, On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. Opt. Lett. 32, 2698–2700 (2007)

    Article  ADS  Google Scholar 

  74. T.B. Pittman, B.C. Jacobs, J.D. Franson, Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002)

    Article  ADS  Google Scholar 

  75. E. Jeffrey, N.A. Peters, P.G. Kwiat, Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6, 100 (2004)

    Article  ADS  Google Scholar 

  76. K.T. McCusker, P.G. Kwiat, Efficient optical quantum state engineering. Phys. Rev. Lett. 103, 163602 (2009)

    Article  ADS  Google Scholar 

  77. J. Mower, D. Englund, Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011)

    Article  ADS  Google Scholar 

  78. C.T. Schmiegelow, M.A. Larotonda, Multiplexing photons with a binary division strategy. Appl. Phys. B 116, 447–454 (2013)

    Article  ADS  Google Scholar 

  79. P.P. Rohde, L.G. Helt, M.J. Steel, A. Gilchrist, Multiplexed single-photon state preparation using a fibre-loop architecture, ArXiv e-prints (2015)

    Google Scholar 

  80. R. Kumar, J.R. Ong, J. Recchio, K. Srinivasan, S. Mookherjea, Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 \(\upmu \)m from a silicon coupled-resonator optical waveguide. Opt. Lett. 38, 2969–2971 (2013)

    Article  ADS  Google Scholar 

  81. M.A. Broome, M.P. Almeida, A. Fedrizzi, A.G. White, Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. Opt. Express 19, 22698–22708 (2011)

    Article  ADS  Google Scholar 

  82. O.J. Morris, R.J. Francis-Jones, K.G. Wilcox, A.C. Tropper, P.J. Mosley, Photon-pair generation in photonic crystal fibre with a 1.5GHz modelocked VECSEL. Opt. Commun. 327, 39–44 (2014). Special Issue on Nonlinear Quantum Photonics

    Google Scholar 

  83. R.-B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, M. Sasaki, Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser. Sci. Rep. 4, 7468 EP (2014)

    Google Scholar 

  84. L.A. Ngah, O. Alibart, L. Labonté, V. D’Auria, S. Tanzilli, Ultra-fast heralded single photon source based on telecom technology. Laser Photonics Rev. 9, L1–L5 (2015)

    Article  Google Scholar 

  85. A. Christ, C. Silberhorn, Limits on the deterministic creation of pure single-photon states using parametric down-conversion. Phys. Rev. A 85, 023829 (2012)

    Article  ADS  Google Scholar 

  86. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Google Scholar 

  87. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011)

    Article  ADS  Google Scholar 

  88. M.J. Collins, C. Xiong, I.H. Rey, T.D. Vo, J. He, S. Shahnia, C. Reardon, T.F. Krauss, M.J. Steel, A.S. Clark, B.J. Eggleton, Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4 (2013)

    Google Scholar 

  89. T. Meany, L.A. Ngah, M.J. Collins, A.S. Clark, R.J. Williams, B.J. Eggleton, M.J. Steel, M.J. Withford, O. Alibart, S. Tanzilli, Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev. 8, L42–L46 (2014)

    Article  Google Scholar 

  90. F. Kaneda, B.G. Christensen, J.J. Wong, H.S. Park, K.T. McCusker, P.G. Kwiat, Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015)

    Google Scholar 

  91. G.J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martín-López, G.D. Marshall, D. Bonneau, M.G. Thompson, J.L. O’Brien, Active temporal and spatial multiplexing of photons. Optica 3, 127–132 (2016)

    Article  Google Scholar 

  92. C. Xiong, X. Zhang, Z. Liu, M. J. Collins, A. Mahendra, L.G. Helt, M.J. Steel, D.Y. Choi, C.J. Chae, P.H.W. Leong, B.J. Eggleton, Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. A. Francis-Jones .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Francis-Jones, R.J.A. (2017). Introduction. In: Active Multiplexing of Spectrally Engineered Heralded Single Photons in an Integrated Fibre Architecture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64188-1_1

Download citation

Publish with us

Policies and ethics