Skip to main content

A Blind Reversible Data Hiding Method for High Dynamic Range Images Taking Advantage of Sparse Histogram

Part of the Lecture Notes in Computer Science book series (LNSC,volume 10431)

Abstract

This paper proposes a method of reversible data hiding (RDH) for high dynamic range (HDR) images. An RDH method once distorts an image to hide data to the image, and the method takes data out and simultaneously recovers the original image without any distortion from the distorted image carrying hidden data. Whereas conventional RDH methods are for ordinary images whose pixel values are uniformly quantized integers, the proposed method focuses HDR images whose pixel values are non-uniformly quantized floating-point numbers. HDR images have a sparse histogram, i.e., many zero points are scattered over the tonal distribution of images, and the method modifies multiple peak and zero points of the histogram to hide data to an image. In addition, while an RDH method generally needs to memorize a set of image-dependent parameters for hidden data extraction and original image recovery, the proposed method is free from parameter memorization by introducing two mechanisms; restriction of histogram modification and a parameter hiding prior to data hiding. Moreover, keys are required to take hidden data out in the proposed method. Experimental results show the effectiveness of the proposed method.

Keywords

  • Digital watermarking
  • Steganography
  • Annotation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The HDR-VDP-2 consists of five metrics; a pixel-by-pixel noticeable probability map, a summarized noticeable probability value, a contrast threshold scaling map, and the maximum threshold scaling factor, and the whole image quality. Values in Table 3 are the last metrics.

References

  1. Wu, M., Liu, B.: Multimedia Data Hiding. Springer, New York (2003)

    CrossRef  MATH  Google Scholar 

  2. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2008)

    Google Scholar 

  3. Fridrich, J.: Steganography in Digital Media. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Langelaar, G.C., Setyawan, I., Lagendijk, R.L.: Watermarking digital image and video data. IEEE Signal Process. Mag. 17(5), 20–46 (2000)

    CrossRef  Google Scholar 

  5. Barni, M.: What is the future for watermarking? (part II). IEEE Signal Process. Mag. 20(6), 53–59 (2003)

    CrossRef  Google Scholar 

  6. Tachibana, T., Fujiyoshi, M., Kiya, H.: A removable watermarking scheme retaining the desired image quality. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 538–542, December 2003

    Google Scholar 

  7. Barni, M.: What is the future for watermarking? (part I). IEEE Signal Process. Mag. 20(5), 55–59 (2003)

    CrossRef  Google Scholar 

  8. Kuo, C.-C.J., Kalker, T., Zhou, W. (eds.): Digital rights management. IEEE Signal Process. Mag. 21(2) 11–117 (2004)

    Google Scholar 

  9. Sae-Tang, W., Liu, S., Fujiyoshi, M., Kiya, H.: A copyright-and privacy-protected image trading system using fingerprinting in discrete wavelet domain with JPEG 2000. IEICE Trans. Fundam. E97-A(11), 2107–2113 (2014)

    Google Scholar 

  10. Caldelli, R., Filippini, F., Becarelli, R.: Reversible watermarking techniques: an overview and a classification. EURASIP J. Inf. Secur., Article ID 134546 (2010)

    Google Scholar 

  11. Shi, Y.Q., Li, X., Zhang, X., Wu, H.T., Ma, B.: Reversible data hiding: advances in the past two decades. IEEE Access 4, 3210–3237 (2016)

    CrossRef  Google Scholar 

  12. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)

    CrossRef  Google Scholar 

  13. Fujiyoshi, M.: Generalized histogram shifting-based blind reversible data hiding with balanced and guarded double side modification. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 488–502. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43886-2_35

    Google Scholar 

  14. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann, June 2010

    Google Scholar 

  15. Dufaux, F., Le Callet, P., Mantiu, R., Mrak, M. (eds.): High Dynamic Range Video: From Acquisition to Display and Applications. Academic Press, April 2016

    Google Scholar 

  16. Guerrini, F., Okuda, M., Adami, N., Leonardi, R.: High dynamic range image watermarking robust against tone-mapping operators. IEEE Trans. Inf. Forensics Secur. 6(2), 283–295 (2011)

    CrossRef  Google Scholar 

  17. Wu, J.L.: Robust watermarking framework for high dynamic range images against tone-mapping attacks. In: Gupta, M.D. (ed.) Watermarking, vol. 2, 229–242. InTech, May 2012

    Google Scholar 

  18. Autrusseau, F., Goudia, D.: Non linear hybrid watermarking for high dynamic range images. In: Proceedings of IEEE International Conference on Image Processing, September 2013

    Google Scholar 

  19. Maiorana, E., Campisi, P.: High-capacity watermarking of high dynamic range images. EURASIP J. Image Video Process., January 2016

    Google Scholar 

  20. Lin, Y.T., Wang, C.M., Chen, W.S., Lin, F.P., Lin, W.: A novel data hiding algorithm for high dynamic range images. IEEE Trans. Multimedia 19(1), 163–196 (2017)

    CrossRef  Google Scholar 

  21. Murofushi, T., Iwahashi, M., Kiya, H.: An integer tone mapping operation for HDR images expressed in floating point data. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2479–2483, May 2013

    Google Scholar 

  22. Yu, C.M., Wu, K.C., Wang, C.M.: A distortion-free data hiding scheme for high dynamic range images. Displays 32(5), 225–236 (2011)

    CrossRef  Google Scholar 

  23. Chang, C.C., Nguyen, T.S., Lin, C.C.: A new distortion-free data embedding scheme for high-dynamic range images. Multimedia Tools Appl. 75(1), 145–163 (2016)

    CrossRef  Google Scholar 

  24. Hwang, J.H., Kim, J.W., Choi, J.U.: A reversible watermarking based on histogram shifting. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 348–361. Springer, Heidelberg (2006). doi:10.1007/11922841_28

    CrossRef  Google Scholar 

  25. Kuo, W.-C., Jiang, D.-J., Huang, Y.-C.: Reversible data hiding based on histogram. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4682, pp. 1152–1161. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74205-0_119

    Google Scholar 

  26. Ward, G.: Real pixels. In: Arvo, J. (ed.) Graphics Gems II. Graphics Gems, pp. 80–83. Academic Press (1991)

    Google Scholar 

  27. Kainz, F., Bogart, R., Hess, D.: The OpenEXR image file format. In: Proceedings of ACM SIGGRAPH, July 2003

    Google Scholar 

  28. Iwahashi, M., Kobayashi, H., Kiya, H.: Lossy compression of sparse histogram images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1361–1364, March 2012

    Google Scholar 

  29. Odaka, T., Sae-Tang, W., Fujiyoshi, M., Kobayashi, H., Iwahashi, M., Kiya, H.: An efficient lossless compression method using histogram packing for HDR images in OpenEXR format. IEICE Trans. Fundam. E97-A(11), 2181–2183 (2014)

    Google Scholar 

  30. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)

    CrossRef  Google Scholar 

  31. Fujiyoshi, M.: A histogram shifting-based blind reversible data hiding method with a histogram peak estimator. In: Proceedings of IEEE International Symposium on Communications and Information Technologies, pp. 318–323, October 2012

    Google Scholar 

  32. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), July 2011

    Google Scholar 

  33. Fujiyoshi, M.: A near-lossless data hiding method with an improved quantizer. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2289–2292, June 2014

    Google Scholar 

  34. Fujiyoshi, M., Kiya, H.: A visually-lossless data hiding method based on histogram modification. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1692–1695, May 2012

    Google Scholar 

  35. Zhang, X.: Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 18(4), 255–258 (2011)

    CrossRef  Google Scholar 

  36. Hong, W., Chen, T.S., Wu, H.Y.: An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett. 19(4), 199–202 (2012)

    CrossRef  Google Scholar 

  37. IEEE Standard for Floating-Point Arithmetic, 754–2008 (2008)

    Google Scholar 

  38. Aydın, T.O., Mantiuk, R., Seidel, H.P.: Extending quality metrics to full dynamic range images. In: Proceedings of SPIE Human Vision and Electronic Imaging XIII, San Jose, USA, vol. 6806, 10 January 2008

    Google Scholar 

  39. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers, November 2003

    Google Scholar 

Download references

Acknowledgment

This work has been partly supported by JSPS KAKENHI Grant Number JP15K00156.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaaki Fujiyoshi or Hitoshi Kiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fujiyoshi, M., Kiya, H. (2017). A Blind Reversible Data Hiding Method for High Dynamic Range Images Taking Advantage of Sparse Histogram. In: Kraetzer, C., Shi, YQ., Dittmann, J., Kim, H. (eds) Digital Forensics and Watermarking. IWDW 2017. Lecture Notes in Computer Science(), vol 10431. Springer, Cham. https://doi.org/10.1007/978-3-319-64185-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64185-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64184-3

  • Online ISBN: 978-3-319-64185-0

  • eBook Packages: Computer ScienceComputer Science (R0)