Skip to main content

An Implicit Function Theorem and Applications to Nonsmooth Boundary Layers

  • Conference paper
  • First Online:
Book cover Patterns of Dynamics (PaDy 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 205))

Included in the following conference series:

Abstract

First we present an abstract result of implicit function theorem type. Then we apply this to singularly perturbed boundary value problems of the type

$$ \begin{array}{l} \varepsilon ^2\left( a(x)u'(x)\right) '+ b(x,u(x),\varepsilon )= 0, \quad x \in (0,1),\\ u(0)=u'(1)=0, \end{array} $$

which are spatially nonsmooth, i.e. such that \(x \mapsto a(x)\) is allowed to be discontinuous and that \(x \mapsto b(x,u,\varepsilon )\) is allowed to be non-differentiable. We show existence and local uniqueness of boundary layer solutions \(u_\varepsilon \) close to zeroth order approximate boundary layer solutions \(u^0_\varepsilon \), i.e. such that \(\Vert u_\varepsilon -u^0_\varepsilon \Vert _\infty \rightarrow 0\) for \(\varepsilon \rightarrow 0\). These results are straightforward generalizations of those which are known for spatially smooth problems. But the rate of convergence \(\Vert u_\varepsilon -u^0_\varepsilon \Vert _\infty \sim \varepsilon \), which is known for spatially smooth problems, is not true anymore for spatially nonsmooth problems, in general.

This paper is dedicated to Bernold Fiedler’s 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Butuzov, V.F.: Asymptotics of the solution of a system of singularly perturbed equations in the case of a multiple root of the degenerate equation. Differ. Equ. 50, 177–188 (2014)

    Google Scholar 

  2. Butuzov, V.F., Nefedov, N.N., Recke, L., Schneider, K.R.: On a singularly perturbed initial value problem in the case of a double root of the degenerate equation. Nonlinear Anal. Theor. Methods Appl. Ser. A 83, 1–11 (2013)

    Google Scholar 

  3. Fife, P.: Boundary and interior transition layer phenomena for pairs of second-order differential equations. J. Math. Anal. Appl. 54, 497–521 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fife, P., Greenlee, W.M.: Transition layers for elliptic boundary value problems with small parameters. Uspechi Mat. Nauk. 24, 103–130 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Hale, J.K., Salazar, D.: Boundary layers in a semilinear parabolic problem. Tohoku Math. J. 51, 421–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kurland, H.L.: Monotone and oscillatory solutions of a problem arising in population genetics. In: Contemporary Mathematics, vol. 17, pp. 323–342. AMS, Providence, R. I. (1983)

    Google Scholar 

  7. Magnus, R.: The implicit function theorem and multi-bump solutions of periodic partial differential equations. Proc. Roy. Soc. Edinburgh 136A, 559–583 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nefedov, N.N., Ni, M.: Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term. Comput. Math. Math. Phys. 55, 2001–2007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. O’Malley, R.E.: Historical Developments in Singular Perturbations. Springer, Berlin (2014)

    MATH  Google Scholar 

  10. Omel’chenko, O.E., Recke, L.: Boundary layer solutions to singularly perturbed problems via the implicit function theorem. Asymptot. Anal. 62, 207–225 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Omel’chenko, O.E., Recke, L.: Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems. Hiroshima Math. J. 45, 35–89 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Omel’chenko, O.E., Recke, L., Butuzov, V.F., Nefedov, N.N.: Time-periodic boundary layer solutions to singularly perturbed parabolic problems. J. Differ. Equ. (2017). https://doi.org/10.1016/j.jde.2016.12.020

  13. Recke, L., Omel’chenko, O.E.: Boundary layer solutions to problems with infinite dimensional singular and regular perturbations. J. Differ. Equ. 245, 3806–3822 (2008)

    Google Scholar 

  14. Vasil’eva, A.B., Butuzov, V.F., Kalachev, L.V.: Boundary Function Method for Singular Perturbation Problems. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  15. Vasileva, A.B., Butuzov, V.F., Nefedov, N.N.: Contrast structures in singularly perturbed problems. Fundam. Prikl. Mat. 4(3), 799–851 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the the Russian Foundation of Basic Research (RFBR-DFG 14-01-91333) and the Deutsche Forschungsgemeinschaft (RE 1336/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Recke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Butuzov, V.F., Nefedov, N.N., Omel’chenko, O.E., Recke, L., Schneider, K.R. (2017). An Implicit Function Theorem and Applications to Nonsmooth Boundary Layers. In: Gurevich, P., Hell, J., Sandstede, B., Scheel, A. (eds) Patterns of Dynamics. PaDy 2016. Springer Proceedings in Mathematics & Statistics, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-64173-7_7

Download citation

Publish with us

Policies and ethics