Advertisement

When Aspergillus fumigatus Meets the Man

  • Sarah Sze Wah Wong
  • Jean-Paul LatgéEmail author
Chapter

Abstract

Aspergillus fumigatus is one of the most ubiquitous opportunistic fungal pathogen, which can cause life-threatening invasive pulmonary infections in immunocompromised populations. Upon the inhalation of the A. fumigatus conidia, the encounter between the fungus and the host presents a complex interplay. This chapter will summarize the host innate immunity against A. fumigatus, and emphasize on the host immune evasion mechanisms of A. fumigatus.

Keywords:

Aspergillus fumigatus Invasive pulmonary aspergillosis Innate immunity Pattern-recognition receptors Pathogen-associated molecular patterns Antifungal 

References

  1. 1.
    Kwon-Chung KJ, Sugui JA (2013) Aspergillus fumigatus – what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9:1–4. doi: 10.1371/journal.ppat.1003743 CrossRefGoogle Scholar
  2. 2.
    Latgé JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sugui JA, Kwon-Chung KJ, Juvvadi PR et al (2014) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a019786
  4. 4.
    Balloy V, Chignard M (2009) The innate immune response to Aspergillus fumigatus. Microbes Infect 11:919–927. doi: 10.1016/j.micinf.2009.07.002 PubMedCrossRefGoogle Scholar
  5. 5.
    Cramer RA, Rivera A, Hohl TM (2011) Immune responses against Aspergillus fumigatus: what have we learned? Curr Opin Infect Dis 24:315–322. doi: 10.1097/QCO.0b013e328348b159 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Espinosa V, Rivera A (2016) First line of defense: innate cell-mediated control of pulmonary Aspergillosis. Front Microbiol 7:1–12. doi: 10.3389/fmicb.2016.00272 CrossRefGoogle Scholar
  7. 7.
    Lass-Flörl C, Roilides E, Löffler J et al (2013) Minireview: host defence in invasive aspergillosis. Mycoses 56:403–413. doi: 10.1111/myc.12052 PubMedCrossRefGoogle Scholar
  8. 8.
    Margalit A, Kavanagh K (2015) The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev 39:670–687. doi: 10.1093/femsre/fuv018 PubMedCrossRefGoogle Scholar
  9. 9.
    Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 11:275–288CrossRefGoogle Scholar
  10. 10.
    Denning DW, Pleuvry A, Cole DC (2011) Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull World Health Organ 89:864–872. doi: 10.2471/BLT.11.089441 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hayes GE, Novak-Frazer L (2016) Chronic pulmonary aspergillosis—where are we? and where are we going? J Fungi 2:18. doi: 10.3390/jof2020018 CrossRefGoogle Scholar
  12. 12.
    Schweer KE, Bangard C, Hekmat K, Cornely OA (2014) Chronic pulmonary aspergillosis. Mycoses 57:257–270. doi: 10.1111/myc.12152 PubMedCrossRefGoogle Scholar
  13. 13.
    Dagenais TRT, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Steinbach WJ, Marr KA, Anaissie EJ et al (2012) Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect 65:453–464. doi: 10.1016/j.jinf.2012.08.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Chai L, Netea MG, Vonk AG, Kullberg B-J (2009a) Fungal strategies for overcoming host innate immune response. Med Mycol 47:227–236. doi: 10.1080/13693780802209082 PubMedCrossRefGoogle Scholar
  16. 16.
    Chotirmall SH, Mirkovic B, Lavelle GM, McElvaney NG (2014) Immunoevasive aspergillus virulence factors. Mycopathologia 178:363–370. doi: 10.1007/s11046-014-9768-y PubMedCrossRefGoogle Scholar
  17. 17.
    Collette JR, Lorenz MC (2011) Mechanisms of immune evasion in fungal pathogens. Curr Opin Microbiol 14:668–675. doi: 10.1016/j.mib.2011.09.007 PubMedCrossRefGoogle Scholar
  18. 18.
    Escobar N, Ordonez SR, Wösten HAB et al (2016) Hide, keep quiet, and keep low: Properties that make Aspergillus fumigatus a successful lung pathogen. Front Microbiol 7:1–13. doi: 10.3389/fmicb.2016.00438 Google Scholar
  19. 19.
    Krappmann S (2016) How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 34:136–146PubMedCrossRefGoogle Scholar
  20. 20.
    Marcos CM, de Oliveira HC, de Melo W, da Silva JF et al (2016) Anti-immune strategies of pathogenic fungi. Front Cell Infect Microbiol 6:1–22. doi: 10.3389/fcimb.2016.00142 CrossRefGoogle Scholar
  21. 21.
    Latgé JP (2010) Tasting the fungal cell wall. Cell Microbiol 12:863–872. doi: 10.1111/j.1462-5822.2010.01474.x PubMedCrossRefGoogle Scholar
  22. 22.
    Mouyna I, Fontaine T (2009) Cell wall of Aspergillus fumigatus: a dynamic structure. In: Latgé J, Steinbach W (eds) Aspergillus fumigatus and Aspergillosis. American Society of Microbiology, Washington, DC, pp 169–183CrossRefGoogle Scholar
  23. 23.
    Bidula S, Schelenz S (2016) A sweet response to a sour situation: the role of soluble pattern recognition receptors in the innate immune response to invasive Aspergillus fumigatus infections. PLoS Pathog 12:1–6. doi: 10.1371/journal.ppat.1005637 CrossRefGoogle Scholar
  24. 24.
    Latgé JP, Calderone R (2002) Host-microbe interactions: fungi invasive human fungal opportunistic infections. Curr Opin Microbiol 5:355–358PubMedCrossRefGoogle Scholar
  25. 25.
    Levitz SM (2010) Innate recognition of fungal cell walls. PLoS Pathog 6:e1000758. doi: 10.1371/journal.ppat.1000758 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    van de Veerdonk FL, Kullberg BJ, van der Meer JW et al (2008) Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312. doi: 10.1016/j.mib.2008.06.002 PubMedCrossRefGoogle Scholar
  27. 27.
    Beauvais A, Fontaine T, Aimanianda V, Latgé JP (2014) Aspergillus cell wall and biofilm. Mycopathologia 178:371–377. doi: 10.1007/s11046-014-9766-0 PubMedCrossRefGoogle Scholar
  28. 28.
    Paris S, Debeaupuis JP, Crameri R et al (2003) Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pihet M, Vandeputte P, Tronchin G et al (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 11:1–11. doi: 10.1186/1471-2180-9-177 Google Scholar
  30. 30.
    Aimanianda V, Bayry J, Bozza S et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121. doi: 10.1038/nature08264 PubMedCrossRefGoogle Scholar
  31. 31.
    Aimanianda V, Latgé JP (2010) Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence 1:185–187. doi: 10.4161/viru.1.3.11317 PubMedCrossRefGoogle Scholar
  32. 32.
    Rappleye CA, Goldman WE (2008) Fungal stealth technology. Trends Immunol 29:18–24. doi: 10.1016/j.it.2007.10.001 PubMedCrossRefGoogle Scholar
  33. 33.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nature 4:88–88. doi: 10.1038/nri1391 Google Scholar
  34. 34.
    Underhill DM, Ozinsky A, Hajjar AM et al (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815. doi: 10.1038/44605 PubMedCrossRefGoogle Scholar
  35. 35.
    Mambula SS, Sau K, Henneke P et al (2002) Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 277:39320–39326. doi: 10.1074/jbc.M201683200 PubMedCrossRefGoogle Scholar
  36. 36.
    Netea MG, Warris A, Van der Meer JW et al (2003) Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188:320–326. doi: 10.1086/376456 PubMedCrossRefGoogle Scholar
  37. 37.
    Luther K, Torosantucci A, Brakhage AA et al (2007) Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol 9:368–381. doi: 10.1111/j.1462-5822.2006.00796.x PubMedCrossRefGoogle Scholar
  38. 38.
    Balloy V, Si-Tahar M, Takeuchi O et al (2005) Involvement of toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 73:5420–5425. doi: 10.1128/iai.73.9.5420-5425.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Meier A, Kirschning CJ, Nikolaus T et al (2003) Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 5:561–570. doi: 10.1046/j.1462-5822.2003.00301.x PubMedCrossRefGoogle Scholar
  40. 40.
    Braedel S, Radsak M, Einsele H et al (2004) Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 125:392–399. doi: 10.1111/j.1365-2141.2004.04922.x PubMedCrossRefGoogle Scholar
  41. 41.
    Chai L, Kullberg BJ, Vonk AG et al (2009b) Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect Immun 77:2184–2192. doi: 10.1128/iai.01455-08 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chai L, Vonk AG, Kullberg BJ et al (2011) Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect 13:151–159. doi: 10.1016/j.micinf.2010.10.005 PubMedCrossRefGoogle Scholar
  43. 43.
    Dubourdeau M, Athman R, Balloy V et al (2006) Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol 177:3994–4001PubMedCrossRefGoogle Scholar
  44. 44.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. doi: 10.1016/j.immuni.2011.05.006 PubMedCrossRefGoogle Scholar
  45. 45.
    Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745. doi: 10.1038/35047123 PubMedCrossRefGoogle Scholar
  46. 46.
    Kasperkovitz PV, Khan NS, Tam JM et al (2011) Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79:4858–4867. doi: 10.1128/IAI.05626-11 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ramirez-Ortiz ZG, Specht CA, Wang JP et al (2008) Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun 76:2123–2129. doi: 10.1128/iai.00047-08 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kasperkovitz PV, Cardenas ML, Vyas JM (2010) TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. J Immunol 185:7614–7622. doi: 10.4049/jimmunol.1002760 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bellocchio S, Montagnoli C, Bozza S et al (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172:3059–3069. doi: 10.4049/jimmunol.172.5.3059 PubMedCrossRefGoogle Scholar
  50. 50.
    Ramaprakash H, Ito T, Standiford TJ et al (2009) Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect Immun 77:108–119PubMedCrossRefGoogle Scholar
  51. 51.
    Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. doi: 10.1016/j.tim.2007.10.012
  52. 52.
    Brown GD, Taylor PR, Reid DM et al (2002) Dectin-1 is a major-glucan receptor on macrophages. J Exp Med 196:407–412. doi: 10.1084/jem.20020470 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Brown GD, Herre J, Williams DL et al (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124. doi: 10.1084/jem.20021890 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43. doi: 10.1038/nri1745 PubMedCrossRefGoogle Scholar
  55. 55.
    Taylor PR, Tsoni SV, Willment JA et al (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38. doi: 10.1038/ni1408 PubMedCrossRefGoogle Scholar
  56. 56.
    Gersuk GM, Underhill DM, Zhu L, Marr KA (2006) Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 176:3717–3724. doi: 10.4049/jimmunol.176.6.3717 PubMedCrossRefGoogle Scholar
  57. 57.
    Hohl TM, Van Epps HL, Rivera A et al (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 1:e30. doi: 10.1371/journal.ppat.0010030 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Steele C, Rapaka RR, Metz A et al (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1:e42PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Underhill DM, Rossnagle E, Lowell CA et al (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–2550. doi: 10.1182/blood-2005-03-1239 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rogers NC, Slack EC, Edwards AD et al (2005) Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517. doi: 10.1016/j.immuni.2005.03.004 PubMedCrossRefGoogle Scholar
  61. 61.
    Reedy J, Wuethrich M, Latgé J, Vyas J (2016) Dectin-2 is a receptor for galactomannan. In: 7th Advances Against Aspergillosis. Manchester, United KingdomGoogle Scholar
  62. 62.
    Saijo S, Ikeda S, Yamabe K et al (2010) Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691. doi: 10.1016/j.immuni.2010.05.001 PubMedCrossRefGoogle Scholar
  63. 63.
    Sun H, Xu XY, Shao HT et al (2013) Dectin-2 is predominately macrophage restricted and exhibits conspicuous expression during Aspergillus fumigatus invasion in human lung. Cell Immunol 284:60–67. doi: 10.1016/j.cellimm.2013.06.013 PubMedCrossRefGoogle Scholar
  64. 64.
    Serrano-Gómez D, Domínguez-Soto A, Ancochea J et al (2004) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 173:5635–5643. doi: 10.4049/jimmunol.173.9.5635 PubMedCrossRefGoogle Scholar
  65. 65.
    Shibata Y, Metzger WJ, Myrvik QN (1997) Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol 159:2462–2467PubMedGoogle Scholar
  66. 66.
    Becker K, Aimanianda V, Wang X et al (2016) Cytokines in human PBMCs via the Fc-gamm receptor/Syk/PI3K pathway. MBio 7:1–11. doi: 10.1128/mBio.01823-15.Editor CrossRefGoogle Scholar
  67. 67.
    Hontelez S, Sanecka A, Netea MG et al (2012) Molecular view on PRR cross-talk in antifungal immunity. Cell Microbiol 14:467–474. doi: 10.1111/j.1462-5822.2012.01748.x PubMedCrossRefGoogle Scholar
  68. 68.
    Gantner BN, Simmons RM, Canavera SJ et al (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117. doi: 10.1084/jem.20021787 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rivera A (2014) When PRRs collide: Mincle meddles with dectin and toll. Cell Host Microbe 15:397–399. doi: 10.1016/j.chom.2014.03.013 PubMedCrossRefGoogle Scholar
  70. 70.
    Wevers BA, Kaptein TM, Zijlstra-Willems EM et al (2014) Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15:494–505. doi: 10.1016/j.chom.2014.03.008 PubMedCrossRefGoogle Scholar
  71. 71.
    Speth C, Rambach G, Lass-Flörl C et al (2004) The role of complement in invasive fungal infections. Mycoses 47:93–103PubMedCrossRefGoogle Scholar
  72. 72.
    Speth C, Rambach G (2012) Complement attack against Aspergillus and corresponding evasion mechanisms. Interdiscip Perspect Infect Dis. doi: 10.1155/2012/463794
  73. 73.
    Kozel TR, Wilson MA, Farrell TP, Levitz SM (1989) Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun 57:3412–3417PubMedPubMedCentralGoogle Scholar
  74. 74.
    Bidula S, Kenawy H, Ali YM et al (2013) Role of ficolin-A and lectin complement pathway in the innate defense against pathogenic aspergillus species. Infect Immun 81:1730–1740. doi: 10.1128/IAI.00032-13 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Braem SGE, Rooijakkers SHM, van Kessel KPM et al (2015) Effective neutrophil phagocytosis of Aspergillus fumigatus is mediated by classical pathway complement activation. J Innate Immun 7:364–374. doi: 10.1159/000369493 PubMedCrossRefGoogle Scholar
  76. 76.
    Dumestre-Perard C, Lamy B, Aldebert D et al (2008) Aspergillus conidia activate the complement by the mannan-binding lectin C2 bypass mechanism. J Immunol 181:7100–7105. doi: 10.4049/jimmunol.181.10.7100 PubMedCrossRefGoogle Scholar
  77. 77.
    Rosbjerg A, Genster N, Pilely K et al (2016) Complementary roles of the classical and lectin complement pathways in the defense against Aspergillus fumigatus. Front Immunol 7:1–10. doi: 10.3389/fimmu.2016.00473 CrossRefGoogle Scholar
  78. 78.
    Sturtevant J, Latgé JP (1992) Participation of complement in the phagocytosis of the conidia of Aspergillus fumigatus by human polymorphonuclear cells. J Infect Dis 166:580–586PubMedCrossRefGoogle Scholar
  79. 79.
    Behnsen J, Hartmann A, Schmaler J et al (2008) The opportunistic human pathogenic fungus Aspergillus fumigatus evades the host complement system. Infect Immun 76:820–827PubMedCrossRefGoogle Scholar
  80. 80.
    Vogl G, Lesiak I, Jensen DB et al (2008) Immune evasion by acquisition of complement inhibitors: the mould Aspergillus binds both factor H and C4b binding protein. Mol Immunol 45:1485–1493. doi: 10.1016/j.molimm.2007.08.011 PubMedCrossRefGoogle Scholar
  81. 81.
    Behnsen J, Lessing F, Schindler S et al (2010) Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun 78:3585–3594. doi: 10.1128/iai.01353-09 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bidula S, Sexton DW, Yates M et al (2015) H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology 146:281–291. doi: 10.1111/imm.12501 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Madan T, Eggleton P, Kishore U et al (1997) Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect Immun 65:3171–3179PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kishore U, Greenhough TJ, Waters P et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315. doi: 10.1016/j.molimm.2005.08.004 PubMedCrossRefGoogle Scholar
  85. 85.
    Mulugeta S, Beers MF (2006) Surfactant protein C: its unique properties and emerging immunomodulatory role in the lung. Microbes Infect 8:2317–2323. doi: 10.1016/j.micinf.2006.04.009 PubMedCrossRefGoogle Scholar
  86. 86.
    Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68. doi: 10.1038/nri1528 PubMedCrossRefGoogle Scholar
  87. 87.
    Tafel O, Latzin P, Paul K et al (2008) Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 8:6. doi: 10.1186/1471-2466-8-6 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Augusto L, Synguelakis M, Johansson J et al (2003) Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect Immun 71:61–67PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Carreto-Binaghi LE, Aliouat EM, Taylor ML (2016) Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 17:66. doi: 10.1186/s12931-016-0385-9 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kishore U, Madan T, Sarma PU et al (2002) Protective roles of pulmonary surfactant proteins, SP-A and SP-D, against lung allergy and infection caused by Aspergillus fumigatus. Immunobiology 205:610–618. doi: 10.1078/0171-2985-00158 CrossRefGoogle Scholar
  91. 91.
    Sano H, Kuroki Y (2005) The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol Immunol 42:279–287. doi: 10.1016/j.molimm.2004.07.014 PubMedCrossRefGoogle Scholar
  92. 92.
    Willment JA, Brown GD (2008) C-type lectin receptors in antifungal immunity. Trends Microbiol 16:27–32. doi: 10.1016/j.tim.2007.10.012 PubMedCrossRefGoogle Scholar
  93. 93.
    Allen MJ, Harbeck R, Smith B et al (1999) Binding of rat and human surfactant proteins A and D to Aspergillus fumigatus conidia. Infect Immun 67:4563–4569PubMedPubMedCentralGoogle Scholar
  94. 94.
    Mehrad B, Strieter RM, Standiford TJ (1999) Role of TNF-α in pulmonary host defense in murine invasive aspergillosis. J Immunol 162:1633–1640PubMedGoogle Scholar
  95. 95.
    Vandivier RW, Ogden CA, Fadok VA et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986. doi: 10.4049/jimmunol.169.7.3978 PubMedCrossRefGoogle Scholar
  96. 96.
    Madan T, Kishore U, Singh M et al (2001) Protective role of lung surfactant protein D in a murine model of invasive pulmonary aspergillosis. Infect Immun 69:2728–2731. doi: 10.1128/IAI.69.4.2728 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Madan T, Reid KBM, Clark H et al (2010) Susceptibility of mice genetically deficient in SP-A or SP-D gene to invasive pulmonary aspergillosis. Mol Immunol 47:1923–1930. doi: 10.1016/j.molimm.2010.02.027 PubMedCrossRefGoogle Scholar
  98. 98.
    LeVine AM, Hartshorn K, Elliott J et al (2002) Absence of SP-A modulates innate and adaptive defense responses to pulmonary influenza infection. Am J Physiol Lung Cell Mol Physiol 282:L563–L572. doi: 10.1152/ajplung.00280.2001 PubMedCrossRefGoogle Scholar
  99. 99.
    Neth O, Jack DL, Dodds AW et al (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68:688–693. doi: 10.1128/iai.68.2.688-693.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Oikonomopoulou K, Edimara S, Lambris JD (2012) Complement system and its role in immune responses. Encycl life Sci. doi: 10.1002/9780470015902.a0000508.pub3
  101. 101.
    Clemons KV, Martinez M, Tong AJ, Stevens DA (2010) Resistance of MBL gene-knockout mice to experimental systemic aspergillosis. Immunol Lett 128:105–107. doi: 10.1016/j.imlet.2009.12.021 PubMedCrossRefGoogle Scholar
  102. 102.
    Crosdale DJ, Poulton K V, Ollier WE, et al (2001) Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis 184:653–656. doi: 10.1086/322791. JID001096 [pii]
  103. 103.
    Lambourne J, Agranoff D, Herbrecht R et al (2009) Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis 49:1486–1491. doi: 10.1086/644619 PubMedCrossRefGoogle Scholar
  104. 104.
    Matsushita M (2009) Ficolins: complement-activating lectins involved in innate immunity. J Innate Immun 2:24–32. doi: 10.1159/000228160 PubMedCrossRefGoogle Scholar
  105. 105.
    Endo Y, Matsushita M, Fujita T (2011) The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 43:705–712. doi: 10.1016/j.biocel.2011.02.003 PubMedCrossRefGoogle Scholar
  106. 106.
    Hummelshøj T, Ma YJ, Munthe-Fog L et al (2012) The interaction pattern of murine serum ficolin-A with microorganisms. PLoS One 7:1–12. doi: 10.1371/journal.pone.0038196 CrossRefGoogle Scholar
  107. 107.
    Ma YJ, Doni A, Hummelshøj T et al (2009) Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition. J Biol Chem 284:28263–28275. doi: 10.1074/jbc.M109.009225 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Genster N, Præstekjær Cramer E, Rosbjerg A et al (2016) Ficolins promote fungal clearance in vivo and modulate the inflammatory cytokine response in host defense against Aspergillus fumigatus. J Innate Immun. doi: 10.1159/000447714
  109. 109.
    Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333. doi: 10.1183/09031936.03.00098803 PubMedCrossRefGoogle Scholar
  110. 110.
    Croft CA, Culibrk L, Moore MM, Tebbutt SJ (2016) Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a critical review. Front Microbiol 7:1–15. doi: 10.3389/fmicb.2016.00472 CrossRefGoogle Scholar
  111. 111.
    Botterel F, Gross K, Ibrahim-Granet O et al (2008) Phagocytosis of Aspergillus fumigatus conidia by primary nasal epithelial cells in vitro. BMC Microbiol 8:97. doi: 10.1186/1471-2180-8-97
  112. 112.
    Paris S, Boisvieux-Ulrich E, Crestani B et al (1997) Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells. Infect Immun 65:1510–1514PubMedPubMedCentralGoogle Scholar
  113. 113.
    Wasylnka JA, Moore MM (2003) Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Sell Sci 116:1579–1587. doi: 10.1242/jcs.00329 Google Scholar
  114. 114.
    Berkova N, Lair-Fulleringer S, Femenia F et al (2006) Aspergillus fumigatus conidia inhibit tumour necrosis factor- or staurosporine-induced apoptosis in epithelial cells. Int Immunol 18:139–150. doi: 10.1093/intimm/dxh356 PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang Z, Liu R, Noordhoek JA, Kauffman HF (2005) Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus. J Infect 51:375–382. doi: 10.1016/j.jinf.2004.12.012 PubMedCrossRefGoogle Scholar
  116. 116.
    Alekseeva L, Huet D, Femenia F et al (2009) Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 9:33. doi: 10.1186/1471-2180-9-33 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lupetti A, van Dissel J, Brouwer C, Nibbering P (2008) Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur J Clin Microbiol Infect Dis 27:1125–1129. doi: 10.1007/s10096-008-0553-z PubMedCrossRefGoogle Scholar
  118. 118.
    Okamoto T, Tanida T, Wei B et al (2004) Regulation of fungal infection by a combination of amphotericin B and peptide 2, a lactoferrin peptide that activates neutrophils. Clin Diagn Lab Immunol 11:1111–1119. doi: 10.1128/CDLI.11.6.1111 PubMedPubMedCentralGoogle Scholar
  119. 119.
    Soruri A, Grigat J, Forssmann U et al (2007) β-Defensins chemoattact macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur J Immunol 37:2474–2486. doi: 10.1002/eji.200737292 PubMedCrossRefGoogle Scholar
  120. 120.
    Heinekamp T, Thywißen A, Macheleidt J et al (2012) Aspergillus fumigatus melanins: Interference with the host endocytosis pathway and impact on virulence. Front Microbiol 3:1–7. doi: 10.3389/fmicb.2012.00440 Google Scholar
  121. 121.
    Jahn B, Langfelder K, Schneider U et al (2002) PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell Microbiol 4:793–803. doi: 10.1046/j.1462-5822.2002.00228.x PubMedCrossRefGoogle Scholar
  122. 122.
    Thywißen A, Heinekamp T, Dahse HM et al (2011) Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol 2:1–12. doi: 10.3389/fmicb.2011.00096 CrossRefGoogle Scholar
  123. 123.
    Akoumianaki T, Kyrmizi I, Valsecchi I et al (2016) Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19:79–90. doi: 10.1016/j.chom.2015.12.002 PubMedCrossRefGoogle Scholar
  124. 124.
    Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. doi: 10.1007/s00253-011-3777-2 PubMedCrossRefGoogle Scholar
  125. 125.
    Pal AK, Gajjar DU, Vasavada AR (2014) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol 52:10–18. doi: 10.3109/13693786.2013.826879 PubMedGoogle Scholar
  126. 126.
    Ibrahim-Granet O, Philippe B, Boleti H et al (2003) Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 71:891–903PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Philippe B, Ibrahim-Granet O, Prevost MC et al (2003) Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71:3034–3042PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chai L, Netea MG, Sugui J et al (2010) Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215:915–920. doi: 10.1016/j.imbio.2009.10.002 PubMedCrossRefGoogle Scholar
  129. 129.
    Kyrmizi I, Gresnigt MS, Akoumianaki T et al (2013) Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting Dectin-1/Syk kinase signaling. J Immunol 191:1287–1299. doi: 10.4049/jimmunol.1300132 PubMedCrossRefGoogle Scholar
  130. 130.
    Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717. doi: 10.1128/CMR.13.4.708-717.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chamilos G, Akoumianaki T, Kyrmizi I et al (2016) Melanin targets LC3-associated phagocytosis (LAP): a novel pathogenetic mechanism in fungal disease. Autophagy 12:888–889. doi: 10.1080/15548627.2016.1157242 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sprenkeler EGG, Gresnigt MS, van de Veerdonk FL (2016) LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus. Cell Microbiol 18:1208–1216. doi: 10.1111/cmi.12616 PubMedCrossRefGoogle Scholar
  133. 133.
    Cunha C, Kurzai O, Löffler J et al (2014) Neutrophil responses to aspergillosis: new roles for old players. Mycopathologia. doi: 10.1007/s11046-014-9796-7
  134. 134.
    Levitz SM, Diamond RD (1985) Mechanisms of resistance of Aspergillus fumigatus conidia to killing by neutrophils in vitro. J Infect Dis 152:33–42. doi: 10.1093/infdis/152.1.33
  135. 135.
    Mircescu MM, Lipuma L, van Rooijen N et al (2009) Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 200:647–656. doi: 10.1086/600380 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Fontaine T, Delangle A, Simenel C et al (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. doi: 10.1371/journal.ppat.1002372
  137. 137.
    Robinet P, Baychelier F, Fontaine T et al (2014) A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J Immunol 192:5332–5342. doi: 10.4049/jimmunol.1303180 PubMedCrossRefGoogle Scholar
  138. 138.
    Gresnigt MS, Bozza S, Becker KL et al (2014) A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog 10:e1003936. doi: 10.1371/journal.ppat.1003936 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gazendam R, van Hamme JL, Tool ATJ et al (2016) Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol. doi: 10.4049/jimmunol.1501811
  140. 140.
    Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps and kill bacteria. Science 303:1532–1535. doi: 10.1126/science.1092385 PubMedCrossRefGoogle Scholar
  141. 141.
    Bruns S, Kniemeyer O, Hasenberg M et al (2010) Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 6:e1000873. doi: 10.1371/journal.ppat.1000873 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans and hyphal forms. Cell Microbiol 8:668–676. doi: 10.1111/j.1462-5822.2005.00659.x PubMedCrossRefGoogle Scholar
  143. 143.
    McCormick A, Heesemann L, Wagener J et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936. doi: 10.1016/j.micinf.2010.06.009 PubMedCrossRefGoogle Scholar
  144. 144.
    Ellett F, Jorgensen J, Frydman GH et al (2017) Neutrophil interactions stimulate evasive hyphal branching by Aspergillus fumigatus. PLoS Pathog 13:e1006154. doi: 10.1371/journal.ppat.1006154 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Fallon JP, Reeves EP, Kavanagh K (2010) Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J Med Microbiol 59:625–633. doi: 10.1099/jmm.0.018192-0 PubMedCrossRefGoogle Scholar
  146. 146.
    Bassetti M, Pecori D, Della Siega P et al (2014) Current and future therapies for invasive aspergillosis. Pulm Pharmacol Ther 32:1–11. doi: 10.1016/j.pupt.2014.06.002 Google Scholar
  147. 147.
    Arendrup MC (2014) Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect 8:42–48. doi: 10.1111/1469-0691.12513 CrossRefGoogle Scholar
  148. 148.
    Hadrich I, Makni F, Neji S et al (2012) Invasive aspergillosis: resistance to antifungal drugs. Mycopathologia 174:131–141. doi: 10.1007/s11046-012-9526-y PubMedCrossRefGoogle Scholar
  149. 149.
    Barczak AK, Hung DT (2009) Productive steps toward an antimicrobial targeting virulence. Curr Opin Microbiol 12:490–496. doi: 10.1016/j.mib.2009.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548. doi: 10.1038/nchembio.2007.24 PubMedCrossRefGoogle Scholar
  151. 151.
    Gauwerky K, Borelli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14:214–222. doi: 10.1016/j.drudis.2008.11.013 PubMedCrossRefGoogle Scholar
  152. 152.
    Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12:300–308. doi: 10.1038/nrmicro3232 PubMedCrossRefGoogle Scholar
  153. 153.
    Bromuro C, Romano M, Chiani P et al (2010) Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 28:2615–2623. doi: 10.1016/j.vaccine.2010.01.012 PubMedCrossRefGoogle Scholar
  154. 154.
    Torosantucci A, Bromuro C, Chiani P et al (2005) A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 202:597–606. doi: 10.1084/jem.20050749 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Chotirmall SH, Al-Alawi M, Mirkovic B et al (2013) Aspergillus-associated airway disease, inflammation, and the innate immune response. Biomed Res Int 2013:723129. doi: 10.1155/2013/723129 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Phadke AP, Mehrad B (2005) Cytokines in host defense against Aspergillus: recent advances. Med Mycol 43:173–176. doi: 10.1080/13693780500052099 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mycology, Unité des AspergillusInstitut PasteurParisFrance

Personalised recommendations