Advertisement

Antifungal Drugs

  • Beatriz BustamanteEmail author
  • Jose A. Hidalgo
  • Pablo E. Campos
Chapter

Abstract

Fungal infections have increased globally due to the increment of the size of population at risk for fungal infection, which is a consequence of the increased use of immunosuppressive drugs and invasive techniques for advanced life support and extended life expectancy among other reasons. Although invasive fungal infections currently are a significant cause of mortality among critically ill patients, development and approval of new systemic antifungal drugs have not occurred at the same rate as the increase in the number of fungal infections. Only one new class of systemic antifungal drugs, Echinocandins, has been included in the antifungal armamentarium in the last 20 years.

The purpose of this chapter is to review the systemic antifungal drugs currently in use, including new insights on pharmacologic and pharmacokinetics properties, clinical indications, adverse events, and resistance mechanisms. Resistance to antifungal drugs is particularly important because it has increased for every drug, including the echinocandins class. New formulations of triazol drugs and combination therapy is also highlighted.

References

  1. 1.
    Takemoto K, Yamamoto Y, Ueda Y (2006) Evaluation of antifungal pharmacodynamic characteristics of AmBisome against Candida albicans. Microbiol Immunol 50:579–586PubMedCrossRefGoogle Scholar
  2. 2.
    Donovick R, Gold WH, Pagano JF, Stout HA (1955–1956) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579–586PubMedGoogle Scholar
  3. 3.
    Mechlinski W, Schaffner CP, Ganis P, Avitabile G (1970) Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Lett 44:3873–3876CrossRefGoogle Scholar
  4. 4.
    National Center for Biotechnology Information. PubChem Compound Database; CID=5280965. https://pubchem.ncbi.nlm.nih.gov/compound/amphotericin%20B. Accessed 29 Jan 2017
  5. 5.
    Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nair MP, Schwartz SA (1982) Immunomodulatory effects of amphotericin-B on cellular cytotoxicity of normal human lymphocytes. Cell Immunol 70:287–300PubMedCrossRefGoogle Scholar
  7. 7.
    Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Christiansen KJ, Bernard EM, Gold JW, Armstrong D (1985) Distribution and activity of amphotericin B in humans. J Infect Dis 152:1037–1043PubMedCrossRefGoogle Scholar
  9. 9.
    Collette N, van der Auwera P, Lopez AP, Heymans C, Meunier F (1989) Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother 33:362–368PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 46:834–840PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ernst EJ, Klepser ME, Pfaller MA (2000) Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 44:1108–1111PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Atkinson AJ, Bennett JE (1978) Amphotericin B Pharmacokinetics in humans. Antimicrob Agents Chemother 13:271–276PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92PubMedCrossRefGoogle Scholar
  14. 14.
    Andes D, Stamstad T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45:922–926PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Andes D, Safdar N, Marchillo K, Conklin R (2006) Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Antimicrob Agents Chemother 50:674–684PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Al-Nakeeb Z, Petraitis V, Goodwin J, Petraitiene R, Walsh TJ, Hope WW (2015) Pharmacodynamics of amphotericin B deoxycholate, amphotericin B lipid complex, and liposomal amphotericin B against Aspergillus fumigatus. Antimicrob Agents Chemother 59:2735–2745PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Luna B, Drew RH, Perfect JR (2000) Agents for treatment of invasive fungal infections. Otolaryngol Clin N Am 33:277–299CrossRefGoogle Scholar
  18. 18.
    Kutty K, Neicheril JC (1987) Treatment of pleural blastomycosis: penetration of amphotericin B into the pleural fluid. J Infect Dis 156:689–690PubMedCrossRefGoogle Scholar
  19. 19.
    Craven PC, Ludden TM, Drutz DJ, Rogers W, Haegele KA, Skrdlant HB (1979) Excretion pathways of amphotericin B. J Infect Dis 140:329–341PubMedCrossRefGoogle Scholar
  20. 20.
    Tortorano AM, Prigitano A, Biraghi E, Viviani MA (2005) The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production. J Antimicrob Chemother 56:777–779PubMedCrossRefGoogle Scholar
  21. 21.
    Blinkhorm RJ, Adelstein D, Spagnuolo PJ (1989) Emergence of a new opportunistic pathogen, Candida lusitaniae. J Clin Microbiol 27:236–240Google Scholar
  22. 22.
    Walsh TJ, Melcher GP, Rinaldi MG, Lecciones J, McGough DA, Kelly P, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622PubMedPubMedCentralGoogle Scholar
  23. 23.
    Messer SA, Jones RN, Fritsche TR (2006) International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 44:1782–1787PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Martel CM, Parker JE, Bader O et al (2010) A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alphademethylase) and ERG5 (encoding C22 desaturase) is cross-resistant to azoles and amphotericin B. Antimicrob Agents Chemother 54:3578–3583PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sanglard DIscher F, Parkinson T, Falconer D, Bille J (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412CrossRefGoogle Scholar
  26. 26.
    Hull CM, Bader O, Parker JE et al (2012) Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother 56:6417–6421PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vandeputte P, Tronchin G, Larcher G et al (2008) A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 52:3701–3709PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Young LY, Hull CM, Heitman J (2003) Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 47:2717–2724PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pappas PG, Kauffman CA, Andes DR et al (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62:e1–50PubMedCrossRefGoogle Scholar
  30. 30.
    Perfect JR, Dismukes WE, Dromer F et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 50:291–322PubMedCrossRefGoogle Scholar
  31. 31.
    Skiada A, Lanternier F, Groll AH et al (2013) Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 98(4):492–504PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chapman SW, Dismukes WE, Proia LA et al, Infectious Diseases Society of America (2008) Clinical practice guidelines for the management of blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin Infect Dis 46:1801–1812Google Scholar
  33. 33.
    Wheat LJ, Freifeld AG, Kleiman MB, et al, Infectious Diseases Society of America (2007) Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:807–825Google Scholar
  34. 34.
    Xia D, Sun WK, Tan MM et al (2015) Aerosolized amphotericin B as prophylaxis for invasive pulmonary aspergillosis: a meta-analysis. Int J Infect Dis 30:78–84PubMedCrossRefGoogle Scholar
  35. 35.
    Patterson TF, Thompson GR 3rd, Denning DW et al (2016) Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1–e60PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Naidoff MA, Green WR (1975) Endogenous Aspergillus endophthalmitis occurring after kidney transplant. Am J Ophthalmol 79:502–509PubMedCrossRefGoogle Scholar
  37. 37.
    Roney P, Barr CC, Chun CH, Raff MJ (1986) Endogenous Aspergillus endophthalmitis. Rev Infect Dis 8:955–958PubMedCrossRefGoogle Scholar
  38. 38.
    Weishaar PD, Flynn HW Jr, Murray TG et al (1998) Endogenous Aspergillus endophthalmitis: clinical features and treatment outcomes. Ophthalmology 105:57–65PubMedCrossRefGoogle Scholar
  39. 39.
    Wilmarth SS, May DR, Roth AM, Cole RJ, Nolan S, Goldstein E (1983) Aspergillus endophthalmitis in an intravenous drug user. Ann Ophthalmol 15:470–472PubMedGoogle Scholar
  40. 40.
    Essman TF, Flynn HW Jr, Smiddy WE et al (1997) Treatment outcomes in a 10-year study of endogenous fungal endophthalmitis. Ophthalmic Surg Lasers 28:185–194PubMedGoogle Scholar
  41. 41.
    Bae JH, Lee SC (2015) Intravitreal liposomal amphotericin B for treatment of endogenous candida endophthalmitis. Jpn J Ophthalmol 59:346–352PubMedCrossRefGoogle Scholar
  42. 42.
    Drew RH, Arthur RR, Perfect JR (2005) Is it time to abandon the use of amphotericin B bladder irrigation? Clin Infect Dis 40:1465–1470PubMedCrossRefGoogle Scholar
  43. 43.
    Sau K, Mambula SS, Latz E, Henneke P, Golenbock DT, Levitz SM (2003) The antifungal drug amphotericin B promotes inflammatory cytokine release by a tolllike receptor and CD14-dependent mechanism. J Biol Chem 278:37561–37568PubMedCrossRefGoogle Scholar
  44. 44.
    Burke D, Lal R, Finkel KW, Samuels J, Foringer JR (2006) Acute amphotericin B overdose. Ann Pharmacother 40:2254–2259PubMedCrossRefGoogle Scholar
  45. 45.
    Wiwanitkit V (2006) Severe hypertension associated with the use of amphotericin B: an appraisal on the reported cases. J Hypertens 24:1445PubMedCrossRefGoogle Scholar
  46. 46.
    Rodrigues CA, Yamamoto M, Arantes Ade M, Chauffaille Mde L, Colombo AL, Bordin JO (2006) Amphotericin B-induced severe hypertension in a young patient: case reportand review of the literature. Ren Fail 28:185–187PubMedCrossRefGoogle Scholar
  47. 47.
    Walker RW, Rosenblum MK (1992) Amphotericin B associated leukoencephalopathy. Neurology 42:2005–2010PubMedCrossRefGoogle Scholar
  48. 48.
    Barton CH, Palh M, Vaziri ND, Cesario T (1984) Renal magnesium wasting associated with amphotericin B therapy. Am J Med 77:471–474PubMedCrossRefGoogle Scholar
  49. 49.
    Lucas da Silva PS, Iglesias SB, Waisberg J (2007) Hypokalemic rhabdomyolysis in a child due to amphotericin B therapy. Eur J Pediatr 166:169–171PubMedCrossRefGoogle Scholar
  50. 50.
    Sutherland SM, Hong DK, Balagtas J, Gutierrez K, Dvorak CC, Sarwal M (2008) Liposomal amphotericin b associated with severe hyperphosphatemia. Pediatr Infect Dis J 27:77–79PubMedCrossRefGoogle Scholar
  51. 51.
    Olin JL, Spooner LM (2006) Amphotericin B-associated hyperbilirubinemia: case report and review of the literature. Pharmacotherapy 26:1011–1017PubMedCrossRefGoogle Scholar
  52. 52.
    Bicanic T, Bottomley C, Loyse A et al (2015) Toxicity of Amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob Agents Chemother 59:7224–7231PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Day JN, Chau TT, Wolbers M et al (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hamill RJ, Sobel JD, El-Sadr W et al (2010) Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis 51:225–2329PubMedCrossRefGoogle Scholar
  55. 55.
    Wingard JR, Kubilis P, Lee L et al (1999) Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 29:1402–1407PubMedCrossRefGoogle Scholar
  56. 56.
    White MH, Bowden RA, Sandler ES et al (1998) Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 27:296–302PubMedCrossRefGoogle Scholar
  57. 57.
    Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162PubMedCrossRefGoogle Scholar
  58. 58.
    Deray G (2002) Amphotericin B nephrotoxicity. J Antimicrob Chemoth 49(Suppl S1):37–41CrossRefGoogle Scholar
  59. 59.
    Bicanic T, Wood R, Meintjes G et al (2008) High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis 47:123–130PubMedCrossRefGoogle Scholar
  60. 60.
    Llanos A, Cieza J, Bernardo J et al (1991) Effect of salt supplementation on amphotericin B nephrotoxicity. Kidney Int 40:302–308PubMedCrossRefGoogle Scholar
  61. 61.
    Stein R, Alexander J (1989) Sodium protects against nephrotoxicity in patients receiving amphotericin B. Am J Med Sci 298:299–304PubMedCrossRefGoogle Scholar
  62. 62.
    Girmenia C, Cimino G, Di Cristofano F, Micozzi A, Gentile G, Martino P (2005) Effects of hydration with salt repletion on renal toxicity of conventional amphotericin B empirical therapy: a prospective study in patients with hematological malignancies. Support Care Cancer 13:987–992PubMedCrossRefGoogle Scholar
  63. 63.
    Bahr NC, Rolfes MA, Musubire A et al (2014) Standardized electrolyte supplementation and fluid management improves survival during amphotericin therapy for cryptococcal meningitis in resource-limited settings. Open Forum Infect Dis 1(2):ofu070. doi: 10.1093/ofid/ofu070 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Borro JM, Solé A, de la Torre M et al (2008) Efficiency and safety of inhaled amphotericin B lipid complex (Abelcet) in the prophylaxis of invasive fungal infections following lung transplantation. Transplant Proc 40:3090–3093PubMedCrossRefGoogle Scholar
  65. 65.
    Rijnders BJ, Cornelissen JJ, Slobbe L et al (2008) Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial. Clin Infect Dis 46:1401–1408PubMedCrossRefGoogle Scholar
  66. 66.
    Behre GF, Schwartz S, Lenz K et al (1995) Aerosol amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in neutropenic cancer patients. Ann Hematol 71:287–291PubMedCrossRefGoogle Scholar
  67. 67.
    Knechtel SA, Klepser ME (2007) Safety of aerosolized amphotericin B. Expert Opin Drug Saf 6:523–532PubMedCrossRefGoogle Scholar
  68. 68.
    Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018PubMedPubMedCentralGoogle Scholar
  69. 69.
    AmBisome (amphotericin B) liposome for injection, package insert. Astellas Pharma US, San Dimas, CA. Revised May 2012. https://www.astellas.us/docs/ambisome.pdf. Accessed 28 Oct 2016
  70. 70.
    Viread (Tenofovir disoproxil fumarate) Package Insert. Gilead Sciences, Inc., Foster City, CA. Revised Feb 2016. http://gilead.com/~/media/files/pdfs/medicines/liver-disease/viread/viread_pi.pdf. Accessed 23 Sept 2016
  71. 71.
    Retrovir (Zidovudine) Package Insert (2008) Glaxo SmithKline, Research Triangle Park, NC. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019910s033lbl.pdf. Accessed 23 Sept 2016
  72. 72.
    Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL (1990) Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr 116:791–797PubMedCrossRefGoogle Scholar
  73. 73.
    Benson JM, Nahata MC (1989) Pharmacokinetics of amphotericin B in children. Antimicrob Agents Chemother 33:1989–1993PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Koren G, Lau A, Klein J et al (1988) Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr 113:559–563PubMedCrossRefGoogle Scholar
  75. 75.
    Nath CE, McLachlan AJ, Shaw PJ, Gunning R, Earl JW (2001) Population pharmacokinetics of amphotericin B in children with malignant diseases. Br J Clin Pharmacol 52:671–680PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Starke JR, Mason EO Jr, Kramer WG, Kaplan SL (1987) Pharmacokinetics of amphotericin B in infants and children. J Infect Dis 155:766–774PubMedCrossRefGoogle Scholar
  77. 77.
    Le J, Adler-Shohet FC, Nguyen C, Lieberman JM (2009) Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J 28:1061–1063PubMedCrossRefGoogle Scholar
  78. 78.
    Van den Anker JN, van Popele NM, Sauer PJ (1995) Antifungal agents in neonatal systemic candidiasis. Antimicrob Agents Chemother 39:1391–1397PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Steinbach WJ (2005) Antifungal agents in children. Pediatr Clin N Am 52:895–915CrossRefGoogle Scholar
  80. 80.
    Federal Register (2008) 73:30832. https://www.gpo.gov/fdsys/pkg/FR-2008-05-29/pdf/E8-11806.pdf. Accessed 20 Sept 2016
  81. 81.
    Abelcet (amphotericin B lipid complex injection), package insert. Enzon Pharmaceuticals, Inc., Bridgewater, NJ. Revised October 2010. http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=41233. Accessed 28 Oct 2016
  82. 82.
    Ismail MA, Lerner SA (1982) Disseminated blastomycosis in a pregnant woman: review of amphotericin B usage during pregnancy. Am Rev Respir Dis 126:350–353PubMedGoogle Scholar
  83. 83.
    McCoy MJ, Ellenberg JF, Killam AP (1980) Coccidioidomycosis complicating pregnancy. Am J Obstet Gynecol 137:739–740PubMedCrossRefGoogle Scholar
  84. 84.
    Kuo D (1962) A case of torulosis of the central nervous system during pregnancy. Med J Aust 49:558–560PubMedGoogle Scholar
  85. 85.
    Silberfarb PM, Sarosi GA, Tosh FE (1972) Cryptococcosis and pregnancy. Am J Obstet Gynecol 112:714–720PubMedCrossRefGoogle Scholar
  86. 86.
    Curole DN (1981) Cryptococcal meningitis in pregnancy. J Reprod Med 26:317–319PubMedGoogle Scholar
  87. 87.
    Harris RE (1966) Coccidioidomycosis complicating pregnancy. Report of 3 cases and review of the literature. Obstet Gynecol 28:401–405PubMedGoogle Scholar
  88. 88.
    Smale LE, Waechter KG (1970) Dissemination of coccidioidomycosis in pregnancy. Am J Obstet Gynecol 107(3):356–361PubMedCrossRefGoogle Scholar
  89. 89.
    Hadsall FJ, Acquarelli MJ (1973) Disseminated coccidioidomycosis presenting as facial granulomas in pregnancy: a report of two cases and a review of the literature. Laryngoscope 83:51–58PubMedCrossRefGoogle Scholar
  90. 90.
    Hager H, Welt SI, Cardasis JP, Alvarez S (1988) Disseminated blastomycosis in a pregnant woman successfully treated with amphotericin-B. A case report. J Reprod Med 33:485–488PubMedGoogle Scholar
  91. 91.
    Neiberg AD, Mavromatis F, Dyke J, Fayyad A (1977) Blastomyces dermatitidis treated during pregnancy: report of a case. Am J Obstet Gynecol 128:911–912PubMedCrossRefGoogle Scholar
  92. 92.
    Philpot CR, Lo D (1972) Cryptococcal meningitis in pregnancy. Med J Aust 2:1005–1007PubMedGoogle Scholar
  93. 93.
    Aitken GW, Symonds EM (1962) Cryptococcal meningitis in pregnancy treated with amphotericin B. A case report. J Obstet Gynaecol Br Emp 69:677–679PubMedCrossRefGoogle Scholar
  94. 94.
    Youssef D, Raval B, El-Abbassi A, Patel P (2013) Pulmonary blastomycosis during pregnancy: case report and review of the literature. Tenn Med 106:37–39PubMedGoogle Scholar
  95. 95.
    Nayak SU, Talwani R, Gilliam B, Taylor G, Ghosh M (2011) Cryptococcal meningitis in an HIV-positive pregnant woman. J Int Assoc Physicians AIDS Care (Chic) 10:79–82CrossRefGoogle Scholar
  96. 96.
    Crum NF, Ballon-Landa G (2006) Coccidioidomycosis in pregnancy: case report and review of the literature. Am J Med 119:993.e11–993.e17CrossRefGoogle Scholar
  97. 97.
    Ilett KF, Kristensen JH (2005) Drug use and breastfeeding. Expert Opin Drug Saf 4:745–768PubMedCrossRefGoogle Scholar
  98. 98.
    Mueller M, Balasegaram M, Koummuki Y, Ritmeijer K, Santana MR, Davidson R (2006) A comparison of liposomal amphotericin B with sodium stibogluconate for the treatment of visceral leishmaniasis in pregnancy in Sudan. J Antimicrob Chemother 58:811–815PubMedCrossRefGoogle Scholar
  99. 99.
    Pipitone MA, Gloster HM (2005) A case of blastomycosis in pregnancy. J Am Acad Dermatol 53:740–741PubMedCrossRefGoogle Scholar
  100. 100.
    Dean JL, Wolf JE, Ranzini AC, Laughlin MA (1994) Use of amphotericin B during pregnancy: case report and review. Clin Infect Dis 18:364–368PubMedCrossRefGoogle Scholar
  101. 101.
    Adler-Moore JP, Gangneux JP, Pappas PG (2016) Comparison between liposomal formulations of amphotericin B. Med Mycol 54:223–231PubMedCrossRefGoogle Scholar
  102. 102.
    Olson JA, Adler-Moore JP, Jensen GM, Schwartz J, Dignani MC, Proffitt RT (2008) Comparison of the physicochemical, antifungal, and toxic properties of two liposomal Amphotericin B Products. Antimicrob Agents Chemother 52:259–268PubMedCrossRefGoogle Scholar
  103. 103.
    Wingard JR, White MH, Anaissie E, Raffalli J, Goodman J, Arrieta A, L Amph/ABLC Collaborative Study Group (2000) A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 31:1155–1163Google Scholar
  104. 104.
    Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97:2405–2425PubMedCrossRefGoogle Scholar
  105. 105.
    Coukell AJ, Brogden RN (1998) Liposomal amphotericin B: therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs 55:585–612PubMedCrossRefGoogle Scholar
  106. 106.
    Vogelsinger H, Weiler S, Djanani A et al (2006) Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. Antimicrob Chemother 57:1153–1160CrossRefGoogle Scholar
  107. 107.
    Perkins WR, Minchey SR, Boni LT et al (1992) Amphotericin B phospholipid interactions responsible for reduced mammalian cell toxicity. Biochim Biophys Acta 1107:271–282PubMedCrossRefGoogle Scholar
  108. 108.
    Adler-Moore J (1994) AmBisome targeting to fungal infections. Bone Marrow Transplant 14(Suppl 5):S3–S7PubMedGoogle Scholar
  109. 109.
    Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal Amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76:485–500PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Latour JF, Fuhrmann C, Lagallarde C, Loreuil F (1996) Amphotericin B intralipid formulation: stability and particle size. J Antimicrob Chemother 37:1165–1169PubMedCrossRefGoogle Scholar
  111. 111.
    Mehta J (1997) Do variations in molecular structure affect the clinical efficacy and safety of lipid-based amphotericin B preparations? Leuk Res 21:183–188PubMedCrossRefGoogle Scholar
  112. 112.
    Boswell GW, Buell D, Bekersky I (1998) AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38:583–592PubMedCrossRefGoogle Scholar
  113. 113.
    Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Felton T, Troke PF, Hope WW (2014) Tissue penetration of antifungal agents. Clin Microbiol Rev 27:68–88PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wade RL, Chaudhari P, Natoli JL, Taylor RJ, Nathanson BH, Horn DL (2013) Nephrotoxicity and other adverse events among inpatients receiving liposomal amphotericin B or amphotericin B lipid complex. Diagn Microbiol Infect Dis 76:361–367PubMedCrossRefGoogle Scholar
  116. 116.
    Ashley ESD, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43:S28–S39CrossRefGoogle Scholar
  117. 117.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618PubMedCrossRefGoogle Scholar
  118. 118.
    Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–499PubMedCrossRefGoogle Scholar
  119. 119.
    Groll AH, Giri N, Petraitis V et al (2000) Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282PubMedCrossRefGoogle Scholar
  120. 120.
    Dupont B (2002) Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother 49(Suppl 1):31–36PubMedCrossRefGoogle Scholar
  121. 121.
    Kethireddy S, Andes D (2007) CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol 3:573–581PubMedCrossRefGoogle Scholar
  122. 122.
    Strenger V, Meinitzer A, Donnerer J et al (2014) Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. J Antimicrob Chemother 69:2522–2526PubMedCrossRefGoogle Scholar
  123. 123.
    Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425PubMedCrossRefGoogle Scholar
  124. 124.
    Richard JH, Amphotericin B (2013) Formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934CrossRefGoogle Scholar
  125. 125.
    Montagna MT, Lovero G, Coretti C et al (2014) In vitro activities of amphotericin B deoxycholate and liposomal amphotericin B against 604 clinical yeast isolates. J Med Microbiol 63:1638–1643PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW (1998) Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother 42:1412–1416PubMedPubMedCentralGoogle Scholar
  127. 127.
    Carrillo-Muñoz AJ, Quindós G, Tur C et al (1999) In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. J Antimicrob Chemother 44:397–401PubMedCrossRefGoogle Scholar
  128. 128.
    Clark JM, Whitney RR, Olsen SJ et al (1991) Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother 35:615–621PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hostetler JS, Clemons KV, Hanson LH, Stevens DA (1992) Efficacy and safety of amphotericin B colloidal dispersion compared with those of amphotericin B deoxycholate suspension for treatment of disseminated murine cryptococcosis. Antimicrob Agents Chemother 36:2656–2560PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pahls S, Schaffner A (1994) Comparison of the activity of free and liposomal amphotericin B in vitro and in a model of systemic and localized murine candidiasis. J Infect Dis 169:1057–1061PubMedCrossRefGoogle Scholar
  131. 131.
    Clark AD, McKendrick S, Tansey PJ, Franklin IM, Chopra R (1998) A comparative analysis of lipid-complexed and liposomal amphotericin B preparations in haematological oncology. Br J Haematol 103:198–204PubMedCrossRefGoogle Scholar
  132. 132.
    Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809–818PubMedCrossRefGoogle Scholar
  133. 133.
    Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 22(Suppl 2):S133–S144PubMedCrossRefGoogle Scholar
  134. 134.
    Mehta J, Kelsey S, Chu P et al (1997) Amphotericin B lipid complex (ABLC) for the treatment of confirmed or presumed fungal infections in immunocompromised patients with hematologic malignancies. Bone Marrow Transplant 20:39–43PubMedCrossRefGoogle Scholar
  135. 135.
    Saliba F, Dupont B (2008) Renal impairment and amphotericin B formulations in patients with invasive fungal infections. Med Mycol 46:97–112PubMedCrossRefGoogle Scholar
  136. 136.
    Sharkey PK, Graybill JR, Johnson ES et al (1996) Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 22:315–321PubMedCrossRefGoogle Scholar
  137. 137.
    Walsh TJ, Hiemenz JW, Seibel NL et al (1998) Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 26:1383–1396PubMedCrossRefGoogle Scholar
  138. 138.
    Walsh TJ, Finberg RW, Arndt C (1999) at al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 340:764–771PubMedCrossRefGoogle Scholar
  139. 139.
    Leenders AC, Daenen S, Jansen RL et al (1998) Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol 103:205–212PubMedCrossRefGoogle Scholar
  140. 140.
    Leenders AC, Reiss P, Portegies P et al (1997) Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 11:1463–1471PubMedCrossRefGoogle Scholar
  141. 141.
    Johnson PC, Wheat LJ, Cloud GA, et al, U.S. National Institute of Allergy and Infectious Diseases Mycoses Study Group (2002) Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med 137:105–109Google Scholar
  142. 142.
    Kauffman CA, Bustamante B, Chapman SW, Pappas PG, Infectious Diseases Society of America (2007) Clinical practice guidelines for the management of sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:1255–1265Google Scholar
  143. 143.
    Bergman SJ, Tyagi I, Ronald K (2010) Antifungal dosing in critically ill patients. Curr Fungal Infect Rep 4:78–86CrossRefGoogle Scholar
  144. 144.
    Würthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ (2005) Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother 49:5092–5098PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12:308–329PubMedCrossRefGoogle Scholar
  146. 146.
    Barrett JP, Vardulaki KA, Conlon C, et al., Amphotericin B Systematic Review Study Group (2003) A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther 25:1295–1320Google Scholar
  147. 147.
    Martino R (2004) Efficacy, safety and cost-effectiveness of Amphotericin B Lipid Complex (ABLC): a review of the literature. Curr Med Res Opin 20:485–504PubMedCrossRefGoogle Scholar
  148. 148.
    Ueda S, Miyamoto S, Kaida K et al (2016) Safety and efficacy of treatment with liposomal amphotericin B in elderly patients at least 65 years old with hematological diseases. J Infect Chemother 22:287–291PubMedCrossRefGoogle Scholar
  149. 149.
    Roden MM, Nelson LD, Knudsen TA et al (2003) Triad of acute infusion-related reactions associated with liposomal amphotericin B: analysis of clinical and epidemiological characteristics. Clin Infect Dis 36:1213–1220PubMedCrossRefGoogle Scholar
  150. 150.
    Rex JH, Stevens DA (2015) Drugs active against fungi, pneumocystis and microsporidia. In: Mandell, Douglas, Bennett’s principles and practice of infectious diseases, 8th edn. Elsevier Saunders, Philadelphia, PA, pp 485–490Google Scholar
  151. 151.
    Peyton LR, Gallagher S, Hashemzadeh M (2015) Triazole antifungals: a review. Drugs Today 51:705–718PubMedGoogle Scholar
  152. 152.
    National Center for Biotechnology Information. PubChem Compound Database; CID:55283. https://pubchem.ncbi.nlm.nih.gov/compound/itraconazole. Accessed 29 Jan 2017
  153. 153.
    National Center for Biotechnology Information. PubChem Compound Database; CID:3365. https://pubchem.ncbi.nlm.nih.gov/compound/fluconazole. Accessed 29 Jan 2017
  154. 154.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 468595. https://pubchem.ncbi.nlm.nih.gov/compound/posaconazole. Accessed 29 Jan 2017
  155. 155.
    National Center for Biotechnology Information. PubChem Compound Database; CID:71616. https://pubchem.ncbi.nlm.nih.gov/compound/voriconazole. Accessed 29 Jan 2017
  156. 156.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 6918485. https://pubchem.ncbi.nlm.nih.gov/compound/isavuconazole. Accessed 29 Jan 2017
  157. 157.
    Mast N, Zheng W, Stout CD, Pikuleva IA (2013) Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Mol Pharmacol 84:86–94PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shyadehi AZ, Lamb DC, Kelly SL et al (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem 271:12445–12450PubMedCrossRefGoogle Scholar
  159. 159.
    Rybak JM, Marx KR, Nishimoto AT, Rogers PD (2015) Isavuconazole: pharmacology pharmacodynamics, and current clinical experience with a new triazole antifungal agent. Pharmacotherapy 35:1037–1051PubMedCrossRefGoogle Scholar
  160. 160.
    Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M (2004) Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 57:218–222PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Dekkers BG, Bakker M, van der Elst KC et al (2016) Therapeutic drug monitoring of posaconazole: an update. Curr Fungal Infect Rep 10:51–61PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Moriyama B, Kadri K, Henning SA, Danner RL, Penzak SR, Walsh TJ (2015) Therapeutic drug monitoring and genotypic screening in the clinical use of voriconazole. Curr Fungal Infect Rep 9:74–87PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Pascual A, Calandra T, Bolay S, Buclin T, Blle J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46:201–211PubMedCrossRefGoogle Scholar
  164. 164.
    Brüggemann RJ, Aarnoutse RE (2015) Fundament and prerequisites for the application of an antifungal TDM service. Curr Fungal Infect Rep 9:122–129PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 69:1162–1176PubMedCrossRefGoogle Scholar
  166. 166.
    Wiederhold NP, Pennick GJ, Dorsey SA et al (2014) A reference laboratory experience of clinically achievable voriconazole, posaconazole, and itraconazole concentrations within the bloodstream and cerebral spinal fluid. Antimicrob Agents Chemother 58:424–431PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nagappan V, Deresinski S (2007) Reviews of anti-infective agents. Posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis 45:1610–1617PubMedCrossRefGoogle Scholar
  168. 168.
    Thompson GR 3rd, Rendon A, Dos Santos RR et al (2016) Isavuconazole treatment of cryptococcosis and dimorphic mycoses. Clin Infect Dis 63:356–362PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Parker JE, Warrilow AG, Price CL, Mullins JG, Kelly DE, Kelly SL (2014) Resistance to antifungals that target CYP51. J Chem Biol 7:143–161PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Cuenca-Estrella M (2014) Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 20(Suppl 6):54–59PubMedCrossRefGoogle Scholar
  171. 171.
    Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, Rodriguez-Tudela JL (2015) Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo 57(Suppl 19):57–64PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wilson DT, Dimondi VP, Johnson SW, Jones TM, Drew RH (2016) Role of isavuconazole in the treatment of invasive fungal infections. Ther Clin Risk Manag 12:1197–1206PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Barr VO, Zdyb EG, Postelnick M (2015) The clinical significance of azole antifungals’ effects on the liver and transaminase levels. Curr Fungal Infect Rep 9:190–195CrossRefGoogle Scholar
  174. 174.
    Feist A, Lee R, Osborne S, Lane J, Yung G (2012) Increased incidence of cutaneous squamous cell carcinoma in lung transplant recipients taking long-term voriconazole. J Heart Lung Transplant 31:1177–1181PubMedCrossRefGoogle Scholar
  175. 175.
    Zwald FO, Spratt M, Lemos BD et al (2012) Duration of voriconazole exposure: an independent risk factor for skin cancer after lung transplantation. Dermatol Surg 38:1369–1374PubMedCrossRefGoogle Scholar
  176. 176.
    Nix DE (2014) Cardiotoxicity induced by antifungal drugs. Curr Fungal Infect Rep 8:129–138CrossRefGoogle Scholar
  177. 177.
    Panos G, Velissaris D, Karamouzos V, Matzaroglou C, Tyllianakis M (2016) Long QT syndrome leading to multiple cardiac arrests after posaconazole administration in an immune-compromised patient with sepsis: an unusual case report. Am J Case Reports 17:295–300CrossRefGoogle Scholar
  178. 178.
    Brüggemann RJM, Alffenaar JC, Blijlevens NMA et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48:1441–1458PubMedCrossRefGoogle Scholar
  179. 179.
    Gubbins PO, Heldenbrand S (2009) Clinically relevant drug interactions of current antifungal agents. Mycoses 53:95–113PubMedCrossRefGoogle Scholar
  180. 180.
    Miceli MH, Kauffman CA (2015) Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 61:1558–1565PubMedCrossRefGoogle Scholar
  181. 181.
    Vadlapatla RK, Patel M, Paturi DK, Pal D, Mitra AK (2014) Clinically relevant drug-drug interactions between antiretrovirals and antifungals. Expert Opin Drug Metab Toxicol 10:561–580PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Nivoix Y, Levêque D, Herbrecht R, Koffel JC, Beretz L, Ubeaud-Sequier G (2008) The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet 47:779–792PubMedCrossRefGoogle Scholar
  183. 183.
    Lempers VJC, Martial LC, Schreuder MF et al (2015) Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Op Pharmacol 24:38–44CrossRefGoogle Scholar
  184. 184.
    Hohmann C, Kang EM, Jancel T (2010) Rifampin and posaconazole coadministration leads to decreased serum posaconazole concentrations. Clin Infect Dis 50:939–940PubMedCrossRefGoogle Scholar
  185. 185.
    Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK Jr, Capparelli EV (2014) Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 74:891–909PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Ramos-Martín V, O'Connor O, Hope W (2015) Clinical pharmacology of antifungal agents in pediatrics: children are not small adults. Curr Opin Pharmacol 24:128–134PubMedCrossRefGoogle Scholar
  187. 187.
    Goldman JM, Abdel-Rahman SM (2016) Pharmacokinetic considerations in treating invasive pediatric fungal infections. Exp Op Drug Metabol Toxicol 12:645–655CrossRefGoogle Scholar
  188. 188.
    Drogouti E, Pana ZD, Tragiannidis A, Hempel G, Groll A (2015) Clinical pharmacology of itraconazole in children and adolescents. Curr Fungal Infect Rep 9:65–73CrossRefGoogle Scholar
  189. 189.
    Dokos C, Pieper S, Lehrnbecher T, Groll AH (2012) Pharmacokinetics, safety and efficacy of voriconazole in pediatric patients: an update. Curr Fungal Infect Rep 6:121–126CrossRefGoogle Scholar
  190. 190.
    Pilmis B, Jullien V, Sobel J, Lecuit M, Lortholary O, Charlier C (2015) Antifungal drugs during pregnancy: an updated review. J Antimicrob Chemother 70:14–22PubMedCrossRefGoogle Scholar
  191. 191.
    Nair AS (2014) Safety of intravenous voriconazole in renal failure. Med J DY Patil Univ 7:105–107CrossRefGoogle Scholar
  192. 192.
    Payne KD, Hall RG (2016) Dosing of antifungal agents in obese people. Expert Rev Anti-Infect Ther 14:257–267PubMedCrossRefGoogle Scholar
  193. 193.
    Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373:1445–1456PubMedCrossRefGoogle Scholar
  194. 194.
    Wang JF, Xue Y, Zhu XB, Fan H (2015) Efficacy and safety of echinocandins versus triazoles for the prophylaxis and treatment of fungal infections: a meta-analysis of RCTs. Eur J Clin Microbiol Infect Dis 34:651–659PubMedCrossRefGoogle Scholar
  195. 195.
    Pappas PG, Kauffman CA, Andes D, et al, Infectious Diseases Society of America (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535Google Scholar
  196. 196.
    Andes DR, Safdar N, Baddley JW,et al, Mycoses Study Group (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122Google Scholar
  197. 197.
    Denning DW, Ribaud P, Milpied N et al (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571PubMedCrossRefGoogle Scholar
  198. 198.
    Herbrecht R, Denning DW, Patterson TF, et al, Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415Google Scholar
  199. 199.
    Perfect JR, Marr KA, Walsh TJ et al (2003) Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin Infect Dis 36:1122–1131PubMedCrossRefGoogle Scholar
  200. 200.
    Patterson TF, Boucher HW, Herbrecht R,et al, European Organization for Research and Treatment of Cancer (EORTC) Invasive Fungal Infections Group (IFIG); Pfizer Global Aspergillus Study Group (2005) Strategy of following voriconazole versus amphotericin B therapy with other licensed antifungal therapy for primary treatment of invasive aspergillosis: impact of other therapies on outcome. Clin Infect Dis 41:1448–1452Google Scholar
  201. 201.
    Singh N, Limaye AP, Forrest G et al (2006) Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation 81:320–326PubMedCrossRefGoogle Scholar
  202. 202.
    Panackal AA, Parisini E, Proschan M (2014) Salvage combination antifungal therapy for acute invasive aspergillosis may improve outcomes: a systematic review and meta-analysis. Int J Infect Dis 28:80–94PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Marr KA, Schlamm HT, Herbrecht R et al (2015) Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med 162:81–89PubMedCrossRefGoogle Scholar
  204. 204.
    Panackal AA (2016) Combination antifungal therapy for invasive aspergillosis revisited. Med Mycol Open Access 2(2). pii: 12Google Scholar
  205. 205.
    Ullmann AJ, Cornely OA, Burchardt A et al (2006) Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother 50:658–666PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Krishna G, Moton A, Ma L, Medlock MM, McLeod J (2009) Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother 53:958–966PubMedCrossRefGoogle Scholar
  207. 207.
    Zoller E, Valente C, Baker K, Klepser ME (2010) Development, clinical utility, and place in therapy of posaconazole for prevention and treatment of invasive fungal infections. Drug Des Devel Ther 4:299–311PubMedPubMedCentralGoogle Scholar
  208. 208.
    Percival KM, Bergman SJ (2014) Update on posaconazole pharmacokinetics: comparison of old and new formulations. Curr Fungal Infect Rep 8:139–145CrossRefGoogle Scholar
  209. 209.
    Wiederhold NP (2015) Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections. Clin Pharmacol 8:1–8PubMedPubMedCentralGoogle Scholar
  210. 210.
    Cornely OA, Maertens J, Winston DJ et al (2007) Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 356:348–359PubMedCrossRefGoogle Scholar
  211. 211.
    Bertz H, Drognitz K, Lübbert M (2014) No difference between posaconazole and fluconazole antifungal prophylaxis and mycological diagnostics except costs in patients undergoing AML chemotherapy: a 1-year “real-life” evaluation. Ann Hematol 93:165–167PubMedCrossRefGoogle Scholar
  212. 212.
    Walsh TJ, Raad I, Patterson TF et al (2007) Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis 44:2–12PubMedCrossRefGoogle Scholar
  213. 213.
  214. 214.
    Greenberg RN, Mullane K, van Burik JA et al (2006) Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 50:126–133PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Chitasombat MN, Kontoyiannis DP (2016) Treatment of mucormycosis in transplant patients: role of surgery and of old and new antifungal agents. Curr Opin Infect Dis 29:340–345PubMedCrossRefGoogle Scholar
  216. 216.
    Durani U, Tosh PK, Barreto JN, Estes LL, Jannetto PJ, Tande AJ (2015) Retrospective comparison of posaconazole levels in patients taking the delayed-release tablet versus the oral suspension. Antimicrob Agents Chemother 59:4914–4918PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Riley TT, Muzny CA, Swiatlo E, Legendre DP (2016) Breaking the mold: a review of mucormycosis and current pharmacological treatment options. Ann Pharmacother 50:747–757PubMedCrossRefGoogle Scholar
  218. 218.
    Maertens JA, Raad II, Marr KA et al (2016) Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet 387:760–769PubMedCrossRefGoogle Scholar
  219. 219.
    Falci DR, Pasqualotto AC (2013) Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist 6:163–174PubMedPubMedCentralGoogle Scholar
  220. 220.
    Carrillo-Muñoz AJ, Giusiano G, Arechavala A et al (2015) Clinical usefulness of triazole derivatives in the management of fungal infections. Rev Esp Quimioter 28:169–182PubMedGoogle Scholar
  221. 221.
    Gupta AK, Leonardi C, Stolz RR, Pierce PF, Conetta B, Ravuconazole Onychomycosis Group (2005) A phase I/II randomized, double-blind, placebo controlled, dose-ranging study evaluating the efficacy, safety and pharmacokinetics of ravuconazole in the treatment of onychomycosis. J Eur Acad Dermatol Venereal 19:437–443Google Scholar
  222. 222.
    Jo Siu WJ, Tatsumi Y, Senda H et al (2013) Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 57:1610–1616PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48:471PubMedCrossRefGoogle Scholar
  225. 225.
    Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142PubMedCrossRefGoogle Scholar
  226. 226.
    Lewis RE. Pharmacology of echinocandins. Up to date. Literature review current through: May 2016. This topic last updated: Feb 05, 2016Google Scholar
  227. 227.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 2826718. https://pubchem.ncbi.nlm.nih.gov/compound/caspofungin. Accessed 29 Jan 2017
  228. 228.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 477468. https://pubchem.ncbi.nlm.nih.gov/compound/micafungin. Accessed 29 Jan 2017
  229. 229.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 166548. https://pubchem.ncbi.nlm.nih.gov/compound/anidulafungin. Accessed 29 Jan 2017
  230. 230.
    Fleet GH (1985) Composition and structure of yeast cell walls. Curr Top Med Mycol 1:24PubMedCrossRefGoogle Scholar
  231. 231.
    Bowman JC, Hicks PS, Kurtz MB et al (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46(9):3001–3012PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Marr KA, Boeckh M, Carter RA et al (2004) Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 39(6):797–802PubMedCrossRefGoogle Scholar
  233. 233.
    Lamaris GA, Lewis RE, Chamilos G et al (2008) Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis 198:186PubMedCrossRefGoogle Scholar
  234. 234.
    Eschenauer G, Depestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3(1):71–97PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Kauffman CA, Carver PL (2008) Update on echinocandin antifungals. Semin Respir Crit Care Med 29(2):211–219PubMedCrossRefGoogle Scholar
  236. 236.
    Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43(S1):S28–S39CrossRefGoogle Scholar
  237. 237.
    Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43:1647–1657PubMedCrossRefGoogle Scholar
  238. 238.
    Azanza Perea JR (2016) Echinocandins: applied pharmacology. Rev Iberoam Micol 33(3):140–144PubMedCrossRefGoogle Scholar
  239. 239.
    Theuretzbacher U (2004) Pharmacokinetics/pharmacodynamics of echinocandins. Eur J Clin Microbiol Infect Dis 23:805PubMedCrossRefGoogle Scholar
  240. 240.
    Cappelletty D, Eiselstein-McKitrick K (2007) The echinocandins. Pharmacotherapy 27:369PubMedCrossRefGoogle Scholar
  241. 241.
    Pfaller MA, Boyken L, Hollis RJ et al (2008) In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol 46:150PubMedCrossRefGoogle Scholar
  242. 242.
    Barchiesi F, Spreghini E, Tomassetti S et al (2006) Effects of caspofungin against Candida guilliermondii and Candida parapsilosis. Antimicrob Agents Chemother 50(8):2719–2727PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Espinel-Ingroff A (1998) Comparison of in vitro activities of the new triazole Sch56592 and the echinocandins mk-0991 (l-743,872) and ly303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36(10):2950–2956PubMedPubMedCentralGoogle Scholar
  244. 244.
    Nakai T, Uno J, Otomo K et al (2002) In vitro activity of FK463, a novel lipopeptide antifungal agent, against a variety of clinically important molds. Chemotherapy 48(2):78–81PubMedCrossRefGoogle Scholar
  245. 245.
    Messer SA, Kirby JT, Sader HS et al (2004) Initial results from a longitudinal international surveillance programme for anidulafungin (2003). J Antimicrob Chemother 54(6):1051–1056PubMedCrossRefGoogle Scholar
  246. 246.
    Kirkpatrick WR, Perea S, Coco BJ et al (2002) Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 46(8):2564–2568PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Diekema DJ, Messer SA, Hollis RJ et al (2003) Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 41(8):3623–3626PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Almyroudis NG, Sutton DA, Fothergill AW et al (2007) In vitro susceptibilities of 217 clinical isolates of zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother 51(7):2587–2590PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Cuenca-Estrella M, Ruiz-Diez B, Martinez-Suarez JV et al (1999) Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 43(1):149–151PubMedCrossRefGoogle Scholar
  250. 250.
    Tawara S, Ikeda F, Maki K et al (2000) In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother 44:57PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Kahn JN, Hsu MJ, Racine F et al (2006) Caspofungin susceptibility in Aspergillus and non-Aspergillus molds: inhibition of glucan synthase and reduction of beta-D-1,3 glucan levels in culture. Antimicrob Agents Chemother 50:2214PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Ito M, Nozu R, Kuramochi T et al (2000) Prophylactic effect of FK463, a novel antifungal lipopeptide, against Pneumocystis carinii infection in mice. Antimicrob Agents Chemother 44:2259PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Schmatz DM, Powles M, McFadden DC et al (1991) Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3-beta-glucan synthesis inhibitor L-671,329. J Protozool 38:151SPubMedGoogle Scholar
  254. 254.
    Ramage G, VandeWalle K, Bachmann SP et al (2002) In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother 46:3634PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Kuhn DM, George T, Chandra J et al (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46:1773PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J (2016) Comparison of the antifungal activity of micafungin and amphotericin B against Candida tropicalis biofilms. J Antimicrob Chemother 71(9):2498–2501PubMedCrossRefGoogle Scholar
  257. 257.
    Pham CD, Iqbal N, Bolden CB et al (2014) Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother 58:4690PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Perlin DS, Shor E, Zhao Y (2015) Update on antifungal drug resistance. Curr Clin Microbiol Rep 2(2):84–95PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Zimbeck AJ, Iqbal N, Ahlquist AM et al (2010) FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 54:5042PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Kofteridis DP, Lewis RE, Kontoyiannis DP (2010) Caspofungin-non-susceptible Candida isolates in cancer patients. J Antimicrob Chemother 65:293PubMedCrossRefGoogle Scholar
  261. 261.
    Alexander BD, Johnson MD, Pfeiffer CD et al (2013) Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Pfaller MA, Castanheira M, Lockhart SR et al (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50(4):1199–1203PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Naicker SD, Magobo RE, Zulu TG et al (2016) Two echinocandin-resistant Candida glabrata FKS mutants from South Africa. Med Mycol Case Rep 11:24–26PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Tan TY, Hsu LY, Alejandria MM et al (2016) Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol 54(5):471–477PubMedCrossRefGoogle Scholar
  265. 265.
    Beyda ND, John J, Kilic A et al (2014) FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis 59:819PubMedCrossRefGoogle Scholar
  266. 266.
    Wang E, Farmakiotis D, Yang D et al (2015) The ever-evolving landscape of candidaemia in patients with acute leukaemia: non-susceptibility to caspofungin and multidrug resistance are associated with increased mortality. J Antimicrob Chemother 70:2362PubMedCrossRefGoogle Scholar
  267. 267.
    Imbert S, Castain L, Pons A et al (2016) Discontinuation of echinocandin and azole treatments led to the disappearance of an FKS alteration but not azole resistance during clonal Candida glabrata persistent candidemia. Clin Microbiol Infect 22(10):891PubMedCrossRefGoogle Scholar
  268. 268.
    van Burik JA, Ratanatharathorn V, Stepan DE et al (2004) Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis 39(10):1407–1416PubMedCrossRefGoogle Scholar
  269. 269.
    Walsh TJ, Teppler H, Donowitz GR et al (2004) Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 351(14):1391–1402PubMedCrossRefGoogle Scholar
  270. 270.
    Reboli AC, Rotstein C, Pappas PG et al (2007) Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 356(24):2472–2482PubMedCrossRefGoogle Scholar
  271. 271.
    Mora-Duarte J, Betts R, Rotstein C et al (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347(25):2020–2029PubMedCrossRefGoogle Scholar
  272. 272.
    Villanueva A, Gotuzzo E, Arathoon EG et al (2002) A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med 113(4):294–299PubMedCrossRefGoogle Scholar
  273. 273.
    de Wet NT, Bester AJ, Viljoen JJ et al (2005) A randomized, double blind, comparative trial of micafungin (FK463) vs. fluconazole for the treatment of oesophageal candidiasis. Aliment Pharmacol Ther 21(7):899–907PubMedCrossRefGoogle Scholar
  274. 274.
    de Wet N, Llanos-Cuentas A, Suleiman J et al (2004) A randomized, double-blind, parallel-group, dose-response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin Infect Dis 39(6):842–849PubMedCrossRefGoogle Scholar
  275. 275.
    Villanueva A, Arathoon EG, Gotuzzo E et al (2001) A randomized double-blind study of caspofungin versus amphotericin for the treatment of Candidal esophagitis. Clin Infect Dis 33(9):1529–1535PubMedCrossRefGoogle Scholar
  276. 276.
    Krause DS, Simjee AE, van Rensburg C et al (2004) A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin Infect Dis 39(6):770–775PubMedCrossRefGoogle Scholar
  277. 277.
    Arathoon EG, Gotuzzo E, Noriega LM et al (2002) Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrob Agents Chemother 46(2):451–457PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Aliff TB, Maslak PG, Jurcic JG et al (2003) Refractory Aspergillus pneumonia in patients with acute leukemia: successful therapy with combination caspofungin and liposomal amphotericin. Cancer 97(4):1025–1032PubMedCrossRefGoogle Scholar
  279. 279.
    Maertens J, Raad I, Petrikkos G et al (2004) Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis 39(11):1563–1571PubMedCrossRefGoogle Scholar
  280. 280.
    Maertens J, Glasmacher A, Herbrecht R et al (2006) Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer 107(12):2888–2897PubMedCrossRefGoogle Scholar
  281. 281.
    Kontoyiannis DP, Hachem R, Lewis RE et al (2003) Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergillosis in patients with hematologic malignancies. Cancer 98(2):292–299PubMedCrossRefGoogle Scholar
  282. 282.
    Grau S, Luque S, Echeverría-Esnal D et al (2016) Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents 48(2):212–214PubMedCrossRefGoogle Scholar
  283. 283.
    Cancidas (caspofungin acetate for injection). Highlights of prescribing information, revised April 2016. www.merck.com/product/usa/pi_circulars/c/cancidas/cancidas_pi.pdf. Accessed 15 Jan 2017
  284. 284.
    Mycamine (micafungin sodium for injection). Highlights of prescribing information, revised August 2016. www.astellas.us/docs/mycamine.pdf. Accessed 15 Jan 2017
  285. 285.
    Eraxis (Anidulafungin for injection). Highlights of prescribing information, revised July 2012. www.accessdata.fda.gov/drugsatfda_docs/label/2012/021632s011lbl.pdf. Accessed 15 Jan 2017
  286. 286.
    Lehrnbecher T, Groll AH (2010) Micafungin: a brief review of pharmacology, safety, and antifungal efficacy in pediatric patients. Pediatr Blood Cancer 55:229PubMedCrossRefGoogle Scholar
  287. 287.
    Ryan DM, Lupinacci RJ, Kartsonis NA (2011) Efficacy and safety of caspofungin in obese patients. Med Mycol 49:748PubMedGoogle Scholar
  288. 288.
    Krishnan BR, James KD, Polowy K et al (2017) CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo) 70(2):130–135CrossRefGoogle Scholar
  289. 289.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 3366. https://pubchem.ncbi.nlm.nih.gov/compound/flucytosine. Accessed 29 Jan 2017
  290. 290.
    Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179PubMedCrossRefGoogle Scholar
  291. 291.
    Onishi J, Meinz M, Thompson J et al (2000) Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Cutler RE, Blair AD, Kelly MR (1978) Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther 24:333–342PubMedCrossRefGoogle Scholar
  293. 293.
    Wade DN, Sudlow G (1972) The kinetics of 5-fluorocytosine elimination in man. Aust NZ J Med 2:153–158CrossRefGoogle Scholar
  294. 294.
    Schönebeck J, Polak A, Fernex M, Scholer HJ (1973) Pharmacokinetic studies on the oral antimycotic agent 5-fluorocytosine in individuals with normal and impaired kidney function. Chemotherapy 18:321–336PubMedCrossRefGoogle Scholar
  295. 295.
    Drouhet E, Babinet Chapusot JP, Kleinknecht D (1973) 5-fluorocytosine in the treatment of candidiasis with acute renal insufficiency. Biomedicine 19:408–414PubMedGoogle Scholar
  296. 296.
    Peman J, Canton E, Espinel-Ingroff A (2009) Antifungal drug resistance mechanisms. Expert Rev Anti-Infect Ther 7:453–460PubMedCrossRefGoogle Scholar
  297. 297.
    Espinel-Ingroff A (2008) Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol 25:101–106PubMedCrossRefGoogle Scholar
  298. 298.
    Chapeland-Leclerc F, Bouchoux J, Goumar A, Chastin C, Villard J, Noel T (2005) Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae. Antimicrob Agents Chemother 49:3101–3108PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Vandeputte P, Pineau L, Larcher G, Noel T, Brèthes D, Chabasse D, Bouchara JP (2011) Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia 171:11–21PubMedCrossRefGoogle Scholar
  300. 300.
    Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144PubMedCrossRefGoogle Scholar
  301. 301.
    Costa C, Ponte A, Pais P et al (2015) New mechanisms of flucytosine resistance in C. glabrata unveiled by a chemogenomics analysis in S. cerevisiae. PLoS One 10:e0135110PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Chowdhary A, Meis JF, Guarro J,et al, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 20(Suppl 3):47–75Google Scholar
  303. 303.
    Kauffman CA, Frame PT (1977) Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob Agents Chemother 11:244–247PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Wise GJ, Goldberg P, Kozinn PJ, Nawabi IU (1976) Agranulocytosis associated with flucytosine for urinary candidiasis. Urology 8:490–491PubMedCrossRefGoogle Scholar
  305. 305.
    Stamm AM, Diasio RB, Dismukes WE et al (1987) Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 83:236–242PubMedCrossRefGoogle Scholar
  306. 306.
    Bennett JE, Dismukes WE, Duma RJ et al (1979) A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 301:26–131CrossRefGoogle Scholar
  307. 307.
    White CA, Traube J (1982) Ulcerating enteritis associated with flucytosine therapy. Gastroenterology 83:1127–1129PubMedGoogle Scholar
  308. 308.
    Harder EJ, Hermans PE (1975) Treatment of fungal infections with flucytosine. Arch Intern Med 135:231–237PubMedCrossRefGoogle Scholar
  309. 309.
    Vermes A, van der Sijs IH, Guchelaar HJ (2000) Flucytosine: correlation between toxicity and pharmacokinetic parameters. Chemotherapy 46:86–94PubMedCrossRefGoogle Scholar
  310. 310.
    Vermes A, Mathot RAA, van der Sijs IH, Dankert J, Guchelaar HJ (2000) Population pharmacokinetics of flucytosine: comparison and validation of three models using STS, NPEM, and NONMEM. Ther Drug Monit 22:676–687PubMedCrossRefGoogle Scholar
  311. 311.
    Fond B, Bentata-Pessayre M, Krivitzky A, Callard P, Dupont B, Delzant G (1983) Iatrogenic colitis during flucytosine treatment for neuromeningeal cryptococcosis. Sem Hop 59:1187PubMedGoogle Scholar
  312. 312.
    Sohail MA, Ikram U (2014) Flucytosine-induced colitis. BMJ Case Rep. pii: bcr2013203381. doi: 10.1136/bcr-2013-203381
  313. 313.
    Cappell MS (2004) Colonic toxicity of administered drugs and chemicals. Am J Gastroenterol 99:1175–1190PubMedCrossRefGoogle Scholar
  314. 314.
    Folk A, Cotoraci C, Balta C et al (2016) Evaluation of hepatotoxicity with treatment doses of flucytosine and amphotericin B for invasive fungal infections. Biomed Res Int 5398730Google Scholar
  315. 315.
    Holt RJ (1978) Clinical problems with 5-fluorocytosine. Mykosen 21:363–369PubMedCrossRefGoogle Scholar
  316. 316.
    Richardson MD, Warnock DW (2003) Fungal infection: diagnosis and management, 3rd edn. Blackwell, Oxford, pp 66–69CrossRefGoogle Scholar
  317. 317.
    Kunka ME, Cady EA, Woo HC, Thompson Bastin ML (2015) Flucytosine pharmacokinetics in a critically ill patient receiving continuous renal replacement therapy. Case Rep Crit Care 2015:927496PubMedPubMedCentralGoogle Scholar
  318. 318.
    Richardson MD, Jones BL (2003) Therapeutic guidelines in systemic fungal infection, 3rd edn. Current Medical Literature, London. Publication link: ca9d0625-7a45-49c0-a3e1-41c6fd17e3c3, pp 53–55Google Scholar
  319. 319.
    Kuang D, Ronco C (2007) Adjustment of antimicrobial regimen in critically ill patients undergoing continuous renal replacement therapy. In: J-L Vincent (ed) Yearbook of intensive care and emergency medicine, pp 592–606Google Scholar
  320. 320.
    Stafford CR, Fisher JF, Fadel HE, Espinel-Ingroff AV, Shadomy S, Hamby M (1983) Cryptococcal meningitis in pregnancy. Obstet Gynecol 62:35S–37SPubMedGoogle Scholar
  321. 321.
    Njoku JC, Gumeel D, Hermsen ED (2010) Antifungal therapy in pregnancy and breastfeeding. Curr Fungal Infect Rep 4:62–69CrossRefGoogle Scholar
  322. 322.
    National Center for Biotechnology Information. PubChem Compound Database; CID: 1549008. https://pubchem.ncbi.nlm.nih.gov/compound/terbinafine. Accessed 29 Jan 2017
  323. 323.
    Petranyi G, Ryder NS, Stütz A (1984) Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224:1239–1419PubMedCrossRefGoogle Scholar
  324. 324.
    Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7PubMedCrossRefGoogle Scholar
  325. 325.
    Hosseini-Yeganeh M, McLachlan AJ (2001) Tissue distribution of terbinafine in rats. J Pharm Sci 90:1817–1828PubMedCrossRefGoogle Scholar
  326. 326.
    Hosseini-Yeganeh M, McLachlan AJ (2002) Physiologically based pharmacokinetic model for terbinafine in rats and humans. Antimicrob Agents Chemother 46:2219–2228PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Leyden J (1998) Pharmacokinetics and pharmacology of terbinafine and itraconazole. J Am Acad Dermatol 38:S42–S47PubMedCrossRefGoogle Scholar
  328. 328.
    Faergemann J, Zehender H, Jones T, Maibach HI (1990) Terbinafine levels in serum, stratum corneum, dermis epidermis (without stratum corneum), hair, sebum, and sweat. Acta Derm Venereol (Stockh) 71:322–326Google Scholar
  329. 329.
    Faergemann J, Zehender H, Denouël J, Millerioux L (1993) Levels of terbinafine in plasma, stratum corneum, dermis-epidermis (without stratum corneum), sebum, hair and nails during and after 250 mg terbinafine orally once per day for four weeks. Acta Derm Venereol 73:305–309PubMedGoogle Scholar
  330. 330.
    Kovarik JM, Kirkesseli S, Humbert H et al (1992) Dose-proportional pharmacokinetics of terbinafine and its A-demethylated metabolite in healthy volunteers. Br J Dermatol 126(Suppl 39):8–13PubMedCrossRefGoogle Scholar
  331. 331.
    De Doncker P (1997) Pharmacokinetics of oral antifungal agents. Dermatol Ther 3:46–57Google Scholar
  332. 332.
    Villars V, Jones TC (1990) Present status of the efficacy and tolerability of terbinafine (Lamisil) used systemically in the treatment of dermatomycoses of skin and nails. J Dermatol Treat 1(Suppl. 2):33–38CrossRefGoogle Scholar
  333. 333.
    Jensen JC (1990) Pharmacokinetics of Lamisil in humans. J Dermatol Treat 1(Suppl 2):15–18CrossRefGoogle Scholar
  334. 334.
    Zehender H, Cabiac MD, Denouei J et al (1994) Elimination kinetics of terbinafine from human plasma and tissues following multiple-dose administration, and comparison with 3 main metabolites. Drug Invest 8:203–210CrossRefGoogle Scholar
  335. 335.
    Debruyne D, Coquerel A (2001) Pharmacokinetics of antifungal agents in onychomycoses. Clin Pharmacokinet 40:441–472PubMedCrossRefGoogle Scholar
  336. 336.
    Jensen JC (1989) Clinical pharmacokinetics of terbinafine (Lamisil). Clin Exp Dermatol 14:110–113PubMedCrossRefGoogle Scholar
  337. 337.
    Meletiadis J, Chanock S, Walsh TJ (2006) Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 19:763–787PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396PubMedGoogle Scholar
  339. 339.
    Vickers AE, Sinclair JR, Zollinger M et al (1999) Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos 27:1029–1038PubMedGoogle Scholar
  340. 340.
    Nejjam F, Zagula M, Cabiac MD et al (1995) Pilot study of terbinafine in children suffering from tinea capitis: evaluation of efficacy, safety and pharmacokinetics. Br J Dermatol 132:98–105PubMedCrossRefGoogle Scholar
  341. 341.
    Ghannoum MA, Wraith LA, Cai B, Nyirady J, Isham N (2008) Susceptibility of dermatophyte isolates obtained from a large worldwide terbinafine tinea capitis clinical trial. Br J Dermatol 159:711–713PubMedCrossRefGoogle Scholar
  342. 342.
    Fernández-Torres B, Carrillo AJ, Martín E et al (2001) In vitro activities of 10 antifungal drugs against 508 dermatophyte strains. Antimicrob Agents Chemother 45:2524–2528PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Carrillo-Muñoz AJ, Giusiano G, Cárdenes D, Fernández-Molina JM, Eraso E, Quindós G, Guardia C, del Valle O, Tur-Tur C, Guarro J (2008) Terbinafine susceptibility patterns for onychomycosis-causative dermatophytes and Scopulariopsis brevicaulis. Int J Antimicrob Agents 31:540–543PubMedCrossRefGoogle Scholar
  344. 344.
    Borba-Santos LP, Rodrigues AM, Gagini TB et al (2015) Susceptibility of Sporothrix brasiliensis isolates to amphotericin B, azoles, and terbinafine. Med Mycol 53:178–188PubMedCrossRefGoogle Scholar
  345. 345.
    Ottonelli Stopiglia CD, Magagnin CM, Castrillón MR et al (2014) Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol 52:56–64PubMedGoogle Scholar
  346. 346.
    Daboit TC, Massotti Magagnin C, Heidrich D et al (2014) In vitro susceptibility of chromoblastomycosis agents to five antifungal drugs and to the combination of terbinafine and amphotericin B. Mycoses 57:116–120PubMedCrossRefGoogle Scholar
  347. 347.
    van Belkum A, Fahal AH, van de Sande WW (2011) In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine. Antimicrob Agents Chemother 55:1771–1773PubMedPubMedCentralCrossRefGoogle Scholar
  348. 348.
    Ameen M, Lear JT, Madan V, Mohd Mustapa MF, Richardson M (2014) British Association of Dermatologists’ guidelines for the management of onychomycosis 2014. Br J Dermatol 171:937–958PubMedCrossRefGoogle Scholar
  349. 349.
    de Sá DC, Lamas AP, Tosti A (2014) Oral therapy for onychomycosis: an evidence-based review. Am J Clin Dermatol 15:17–36PubMedGoogle Scholar
  350. 350.
    Gupta AK, Daigle D, Foley KA (2015) Network meta-analysis of onychomycosis treatments. Skin Appendage Disord 1:74–81PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Gupta AK, Gregurek-Novak T (2001) Efficacy of itraconazole, terbinafine, fluconazole, griseofulvin and ketoconazole in the treatment of Scopulariopsis brevicaulis causing onychomycosis of the toes. Dermatology 202:235–238PubMedCrossRefGoogle Scholar
  352. 352.
    Onsberg P (1980) Scopulariopsis brevicaulis in nails. Dermatologica 161:259–264PubMedCrossRefGoogle Scholar
  353. 353.
    Chen X, Jiang X, Yang M et al (2016) Systemic antifungal therapy for tinea capitis in children. Cochrane Database Syst Rev 5:CD004685Google Scholar
  354. 354.
    Gupta AK, Drummond-Main C (2013) Meta-analysis of randomized, controlled trials comparing particular doses of griseofulvin and terbinafine for the treatment of tinea capitis. Pediatr Dermatol 30:1–6PubMedCrossRefGoogle Scholar
  355. 355.
    Howden BP, Slavin MA, Schwarer AP, Mijch AM (2003) Successful control of disseminated Scedosporium prolificans infection with a combination of voriconazole and terbinafine. Eur J Clin Microbiol Infect Dis 22:111–113PubMedGoogle Scholar
  356. 356.
    Bhat SV, Paterson DL, Rinaldi MG, Veldkamp PJ (2007) Scedosporium prolificans brain abscess in a patient with chronic granulomatous disease: successful combination therapy with voriconazole and terbinafine. Scand J Infect Dis 39:87–90PubMedCrossRefGoogle Scholar
  357. 357.
    Gosbell IB, Toumasatos V, Yong J, Kuo RS, Ellis DH, Perrie RC (2003) Cure of orthopaedic infection with Scedosporium prolificans, using voriconazole plus terbinafine, without the need for radical surgery. Mycoses 46:233–236PubMedCrossRefGoogle Scholar
  358. 358.
    Li JY, Yong TY, Grove DI, Coates PT (2008) Successful control of Scedosporium prolificans septic arthritis and probable osteomyelitis without radical surgery in a long-term renal transplant recipient. Transpl Infect Dis 10:63–65PubMedCrossRefGoogle Scholar
  359. 359.
    Tortorano AM, Richardson M, Roilides E, et al, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (2014) European ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 20(Suppl 3):27–46Google Scholar
  360. 360.
    N’diaye B, Dieng MT, Perez A, Stockmeyer M, Bakshi R (2006) Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int J Dermatol 45:154–157PubMedCrossRefGoogle Scholar
  361. 361.
    Rothe A, Seibold M, Hoppe T et al (2004) Combination therapy of disseminated Fusarium oxysporum infection with terbinafine and amphotericin B. Ann Hematol 83:394–397PubMedCrossRefGoogle Scholar
  362. 362.
    Neuburger S, Massenkeil G, Seibold M et al (2008) Successful salvage treatment of disseminated cutaneous fusariosis with liposomal amphotericin B and terbinafine after allogeneic stem cell transplantation. Transpl Infect Dis 10:290–293PubMedCrossRefGoogle Scholar
  363. 363.
    Tavakkol A, Fellman S, Kianifard F (2006) Safety and efficacy of oral terbinafine in the treatment of onychomycosis: analysis of the elderly subgroup in Improving Results in Onychomycosis-Concomitant Lamisil and Debridement (IRON-CLAD), an open-label, randomized trial. Am J Geriatr Pharmacother 4:1–13PubMedCrossRefGoogle Scholar
  364. 364.
    Villars VV, Jones TC (1983) Special features of the clinical use of oral terbinafine in the treatment of fungal diseases. Br J Med 308:1275–1279Google Scholar
  365. 365.
    O’Sullivan DP, Needham CA, Bangs A, Atkin K, Kendall FD (1996) Postmarketing surveillance of oral terbinafine in the UK: report of a large cohort study. Br J Clin Pharmacol 42:559–565PubMedCrossRefGoogle Scholar
  366. 366.
    Van’t Wout JW, Herrmann WA, De Vries RA, Stricker BHC (1994) Terbinafine-associated hepatic injury. J Hepatol 21:115–117CrossRefGoogle Scholar
  367. 367.
    Juhlin L (1992) Loss of taste and terbinafine. Lancet 339:1483PubMedCrossRefGoogle Scholar
  368. 368.
    Doty RL, Haxel BR (2005) Objective assessment of terbinafine-induced taste loss. Laryngoscope 115:2035–2037PubMedCrossRefGoogle Scholar
  369. 369.
    Beutler M, Hartmann K, Kuhn M, Gartmann J (1993) Taste disorders and terbinafine. Br Med J 307:26CrossRefGoogle Scholar
  370. 370.
    Stricker BH, Van Riemsdijk MM, Sturkenboom MC, Ottervanger JP (1996) Taste loss to terbinafine: a case-control study of potential risk factors. Br J Clin Pharmacol 42:313–318PubMedPubMedCentralCrossRefGoogle Scholar
  371. 371.
    Zheng Y, Zhang J, Chen H, Lai W, Maibach HI (2016) Terbinafine-induced lichenoid drug eruption. Cutan Ocul Toxicol 30:1–3Google Scholar
  372. 372.
    George A, Bhatia A, Kanish B, Williams A (2015) Terbinafine induced pityriasis rosea-like eruption. Indian J Pharmacol 47:680–681PubMedPubMedCentralCrossRefGoogle Scholar
  373. 373.
    Bonsmann G, Schiller M, Luger TA, Ständer S (2001) Terbinafine-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol 44:925–931PubMedCrossRefGoogle Scholar
  374. 374.
    Lorentz K, Booken N, Goerdt S, Goebeler M (2008) Subacute cutaneous lupus erythematosus induced by terbinafine: case report and review of literature. J Dtsch Dermatol Ges 6:823–827PubMedCrossRefGoogle Scholar
  375. 375.
    Pillans PI, Boyd IW (2007) Toenails and agranulocytosis. Intern Med J 37:572–575PubMedCrossRefGoogle Scholar
  376. 376.
    Gupta AK, Soori GS, Del Rosso JQ, Bartos PB, Shear NH (1998) Severe neutropenia associated with oral terbinafine therapy. J Am Acad Dermatol 38:765–767PubMedCrossRefGoogle Scholar
  377. 377.
    Ornstein DL, Ely P (1998) Reversible agranulocytosis associated with oral terbinafine for onychomycosis. J Am Acad Dermatol 39:1023–1024PubMedCrossRefGoogle Scholar
  378. 378.
    Shapiro M, Li LJ, Miller J (1999) Terbinafine-induced neutropenia. Br J Dermatol 140:1196–1197PubMedGoogle Scholar
  379. 379.
    Conjeevaram G, Vongthavaravat V, Sumner R, Koff RS (2001) Terbinafine-induced hepatitis and pancytopenia. Dig Dis Sci 46:1714–1716PubMedCrossRefGoogle Scholar
  380. 380.
    Aguilar C, Mueller KK (2001) Reversible agranulocytosis associated with oral terbinafine in a pediatric patient. J Am Acad Dermatol 45:632–634PubMedCrossRefGoogle Scholar
  381. 381.
    Kovacs MJ, Alshammari S, Guenther L, Bourcier M (1994) Neutropenia and pancytopenia associated with oral terbinafine. J Am Acad Dermatol 31:806PubMedCrossRefGoogle Scholar
  382. 382.
    Tsai HH, Lee WR, Hu CH (2002) Isolated thrombocytopenia associated with oral terbinafine. Br J Dermatol 147:627–628PubMedCrossRefGoogle Scholar
  383. 383.
    Grunwald MH (1998) Thrombocytopenia associated with oral terbinafine. Int J Dermatol 37:634PubMedGoogle Scholar
  384. 384.
    Kantarcıoğlu B, Türköz HK, Yılmaz G et al (2014) Aplastic anemia associated with oral terbinafine: a case report and review of the literature. Turk J Haematol 31:411–416PubMedPubMedCentralCrossRefGoogle Scholar
  385. 385.
    Chitturi S, Farrell GC (2007) Drug-induced liver disease. In: Schiff ER, Sorrell MF, Maddrey WC (eds) Schiff’s diseases of the liver, 10th edn. Lippincott Williams and Wilkins, Philadelphia, pp 924–1005Google Scholar
  386. 386.
    Gupta AK, del Rosso JQ, Lynde CW, Brown GH, Shear NH (1998) Hepatitis associated with terbinafine therapy: three case reports and a review of the literature. Clin Exp Dermatol 23:64–67PubMedCrossRefGoogle Scholar
  387. 387.
    Anania FA, Rabin L (2002) Terbinafine hepatotoxicity resulting in chronic biliary ductopenia and portalfibrosis. Am J Med 112:741–742PubMedCrossRefGoogle Scholar
  388. 388.
    Choudhary NS, Kotecha H, Saraf N, Gautam D, Saigal S (2014) Terbinafine induced liver injury: a case report. J Clin Exp Hepatol 4:264–265PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Dürrbeck A, Nenoff P (2016) Terbinafine: relevant drug interactions and their management. Hautarzt 67:718–723PubMedCrossRefGoogle Scholar
  390. 390.
    Jensen P, Lehne G, Fauchald P, Simonsen S (1996) Effect of oral terbinafine treatment on cyclosporin pharmacokinetics in organ transplant recipients with dermatophyte nail infection. Acta Derm Venereol 76:280–281PubMedGoogle Scholar
  391. 391.
    WHO Pharmaceuticals. Newsletter 2001, No. 02&03, p 6Google Scholar
  392. 392.
    (2007) Terbinafine hydrochloride [package insert]. Novartis Pharmaceuticals, East Hanover, NJGoogle Scholar
  393. 393.
    Wagner C, Graninger W, Presterl E, Joukhadar C (2006) The echinocandins: comparison of their pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology 78(4):161–177PubMedCrossRefGoogle Scholar
  394. 394.
    Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3):76–98Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beatriz Bustamante
    • 1
    • 2
    Email author
  • Jose A. Hidalgo
    • 3
  • Pablo E. Campos
    • 4
  1. 1.Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano HerediaLimaPeru
  2. 2.Departamento de Enfermedades Infecciosas, Tropicales y DermatológicasHospital Cayetano HerediaLimaPeru
  3. 3.Division de Enfermedades InfecciosasHospital Guillermo AlmenaraLimaPeru
  4. 4.Investigaciones Medicas en SaludLimaPeru

Personalised recommendations