Abstract
In a multi-robot system, a number of autonomous robots sense, communicate, and decide to move within a given domain to achieve a common goal. To prove such a system satisfies certain properties, one must either provide an analytical proof, or use an automated verification method. To enable the second approach, we propose a method to automatically generate a discrete state space of a given robot system. This allows using existing model checking tools and algorithms. We construct the state space of a number of robots, each arbitrarily moving along a certain path within a bounded polygonal area. This state space is then used to verify visibility properties (e.g., if the communication graph of the robots is connected) by means of model-checking tools. Using our method, there is no need to analytically prove that the properties are preserved with every change in the motion strategy of the robots. We have provided a theoretical upper bound on the complexity of the state space, and also implemented a tool to automatically generate the state space and verify some properties to demonstrate the applicability of our method in various environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antuña, L., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model checking of more complex emergent behaviours of swarm navigation algorithms. In: Proceedings of 16th Annual Conference on Towards Autonomous Robotic Systems, pp. 26–37 (2015)
Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. Theory Appl. 23(3), 313–335 (2002)
Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for robot swarms: a design method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17 (2014)
Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Dixon, C., Winfield, A.F., Fisher, M., Zeng, C.: Towards temporal verification of swarm robotic systems. Rob. Auton. Syst. 60(11), 1429–1441 (2012)
Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 294–305. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54423-1_26
Efrat, A., Leonidas, J.G., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.: Sweeping simple polygons with a chain of guards. In: SODA 2000, pp. 927–936 (2000)
Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)
Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2020–2025 (2005)
Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_33
Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)
Guo, M., Dimarogonas, D.: Distributed plan reconfiguration via knowledge transfer in multi-agent systems under local LTL specifications. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4309 (2014)
Hemmer, M., Huang, K., Bungiu, F., Xu, N.: 2D visibility computation. In: CGAL User and Reference Manual, 4.7 edn. CGAL Editorial Board (2015)
Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). doi:10.1007/11691372_29
Kloetzer, M., Belta, C.: Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Trans. Rob. 23, 320–330 (2007)
Konur, S., Dixon, C., Fisher, M.: Analysis robot swarm behaviour via probabilistic model checking. Rob. Auton. Syst. 60(2), 199–213 (2012)
Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Rob. Res. 29(14), 1743–1760 (2010)
Mirante, A., Weingarten, N.: The radial sweep algorithm for constructing triangulated irregular networks. IEEE Comput. Graph. Appl. 2(3), 11–21 (1982)
Nembrini, J., Winfield, A., Melhuish, C.: Minimalist coherent swarming of wireless networked autonomous mobile robots. In: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 373–382. ICSAB, MIT Press (2002)
O’rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)
Sabattini, L., Secchi, C., Chopra, N.: Decentralized estimation and control for preserving the strong connectivity of directed graphs. IEEE Trans. Cybern. 45(10), 2273–2286 (2015)
Shamos, M.I., Hoey, D.: Geometric intersection problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 208–215. IEEE (1976)
Sheshkalani, A.N., Khosravi, R., Fallah, M.K.: Discretizing the state space of multiple moving robots to verify visibility properties. In: Proceedings of 16th Annual Conference on Towards Autonomous Robotic Systems, pp. 186–191 (2015)
Winfield, A.F., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intelligence 2(2–4), 241–266 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sheshkalani, A.N., Khosravi, R., Mohammadi, M. (2017). Verification of Visibility-Based Properties on Multiple Moving Robots. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-64107-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64106-5
Online ISBN: 978-3-319-64107-2
eBook Packages: Computer ScienceComputer Science (R0)