Verification of Visibility-Based Properties on Multiple Moving Robots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10454)


In a multi-robot system, a number of autonomous robots sense, communicate, and decide to move within a given domain to achieve a common goal. To prove such a system satisfies certain properties, one must either provide an analytical proof, or use an automated verification method. To enable the second approach, we propose a method to automatically generate a discrete state space of a given robot system. This allows using existing model checking tools and algorithms. We construct the state space of a number of robots, each arbitrarily moving along a certain path within a bounded polygonal area. This state space is then used to verify visibility properties (e.g., if the communication graph of the robots is connected) by means of model-checking tools. Using our method, there is no need to analytically prove that the properties are preserved with every change in the motion strategy of the robots. We have provided a theoretical upper bound on the complexity of the state space, and also implemented a tool to automatically generate the state space and verify some properties to demonstrate the applicability of our method in various environments.


Formal methods for robotics Distributed robot systems Verification 


  1. 1.
    Antuña, L., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model checking of more complex emergent behaviours of swarm navigation algorithms. In: Proceedings of 16th Annual Conference on Towards Autonomous Robotic Systems, pp. 26–37 (2015)Google Scholar
  2. 2.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. Theory Appl. 23(3), 313–335 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for robot swarms: a design method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17 (2014)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Dixon, C., Winfield, A.F., Fisher, M., Zeng, C.: Towards temporal verification of swarm robotic systems. Rob. Auton. Syst. 60(11), 1429–1441 (2012)CrossRefGoogle Scholar
  7. 7.
    Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 294–305. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54423-1_26 CrossRefGoogle Scholar
  8. 8.
    Efrat, A., Leonidas, J.G., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.: Sweeping simple polygons with a chain of guards. In: SODA 2000, pp. 927–936 (2000)Google Scholar
  9. 9.
    Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2020–2025 (2005)Google Scholar
  11. 11.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19835-9_33 CrossRefGoogle Scholar
  12. 12.
    Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, M., Dimarogonas, D.: Distributed plan reconfiguration via knowledge transfer in multi-agent systems under local LTL specifications. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4309 (2014)Google Scholar
  14. 14.
    Hemmer, M., Huang, K., Bungiu, F., Xu, N.: 2D visibility computation. In: CGAL User and Reference Manual, 4.7 edn. CGAL Editorial Board (2015)Google Scholar
  15. 15.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). doi: 10.1007/11691372_29 CrossRefGoogle Scholar
  16. 16.
    Kloetzer, M., Belta, C.: Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Trans. Rob. 23, 320–330 (2007)CrossRefGoogle Scholar
  17. 17.
    Konur, S., Dixon, C., Fisher, M.: Analysis robot swarm behaviour via probabilistic model checking. Rob. Auton. Syst. 60(2), 199–213 (2012)CrossRefGoogle Scholar
  18. 18.
    Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Rob. Res. 29(14), 1743–1760 (2010)CrossRefGoogle Scholar
  19. 19.
    Mirante, A., Weingarten, N.: The radial sweep algorithm for constructing triangulated irregular networks. IEEE Comput. Graph. Appl. 2(3), 11–21 (1982)CrossRefGoogle Scholar
  20. 20.
    Nembrini, J., Winfield, A., Melhuish, C.: Minimalist coherent swarming of wireless networked autonomous mobile robots. In: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 373–382. ICSAB, MIT Press (2002)Google Scholar
  21. 21.
    O’rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  22. 22.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  23. 23.
    Sabattini, L., Secchi, C., Chopra, N.: Decentralized estimation and control for preserving the strong connectivity of directed graphs. IEEE Trans. Cybern. 45(10), 2273–2286 (2015)CrossRefGoogle Scholar
  24. 24.
    Shamos, M.I., Hoey, D.: Geometric intersection problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 208–215. IEEE (1976)Google Scholar
  25. 25.
    Sheshkalani, A.N., Khosravi, R., Fallah, M.K.: Discretizing the state space of multiple moving robots to verify visibility properties. In: Proceedings of 16th Annual Conference on Towards Autonomous Robotic Systems, pp. 186–191 (2015)Google Scholar
  26. 26.
    Winfield, A.F., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless connected swarm of mobile robots. Swarm Intelligence 2(2–4), 241–266 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations