Mechanics of Continuum Manipulators, a Comparative Study of Five Methods with Experiments

  • S. M. Hadi SadatiEmail author
  • Seyedeh Elnaz Naghibi
  • Ali Shiva
  • Ian D. Walker
  • Kaspar Althoefer
  • Thrishantha Nanayakkara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10454)


Investigations on control and optimization of continuum manipulators have resulted in a number of kinematic and dynamic modeling approaches each having their own advantages and limitations in various applications. In this paper, a comparative study of five main methods in the literature for kinematic, static and dynamic modeling of continuum manipulators is presented in a unified mathematical framework. The five widely used methods of Lumped system dynamic model, Constant curvature, two-step modified constant curvature, variable curvature Cosserat rod and beam theory approach, and series solution identification are re-viewed here with derivation details in order to clarify their methodological differences. A comparison between computer simulations and experimental results using a STIFF-FLOP continuum manipulator is presented to study the advantages of each modeling method.


Continuum manipulator Dynamic Lumped system Constant curvature Variable curvature Cosserat Beam theory Series solution Experiments 



This work is supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under MOTION Grant: EP/N03211X/2, and European Union H2020 project FourByThree code 637095.


  1. 1.
    Hirose, S., Mori, M.: Biologically inspired snake-like robots. In: Proceedings of IEEE International Conference Robotics and Biomimetics, pp. 1–7 (2004)Google Scholar
  2. 2.
    Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., Menciassi, A.: Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFFFLOP approach. Soft Robot. 1(2), 122–131 (2014)CrossRefGoogle Scholar
  3. 3.
    Webster, R.J., Jones, B.A.: Design and kinematic modeling of CC continuum robots: a review. Int. J. Rob. Res. 29(13), 1661–1683 (2010)CrossRefGoogle Scholar
  4. 4.
    Mehling, J.S., Diftler, M., Chu, M., et al.: A minimally invasive tendril robot for in-space inspection. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, pp. 690–695 (2006)Google Scholar
  5. 5.
    Godage, I.S., Branson, D.T., Guglielmino, E., et al.: Shape function-based kinematics and dynamics for variable length continuum robotic arms. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 452–457 (2011)Google Scholar
  6. 6.
    Godage, I.S., Wirz, R., Walker, I.D., Webster III, R.J.: Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robot. 2(3), 96–106 (2015)CrossRefGoogle Scholar
  7. 7.
    Shapiro, Y., Wolf, A., Gabor, K.: Bi-bellows: pneumatic bending actuator. Sens. Actuators, A 167(2), 484–494 (2011)CrossRefGoogle Scholar
  8. 8.
    Fraś, J., Czarnowski, J., Maciaś, M., Główka, J.: Static modeling of multisection soft continuum manipulator for stiff-flop project. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 365–375. Springer, Cham (2014). doi: 10.1007/978-3-319-05353-0_35 CrossRefGoogle Scholar
  9. 9.
    Sadati, S.M.H., Shiva, A., Ataka, A., et. al.: A Geometry deformation model for compound continuum manipulators with external loading. In: 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016)Google Scholar
  10. 10.
    Sadati, S.M.H., et al.: A geometry deformation model for braided continuum manipulators. Front. Robot. AI 4, June 2017Google Scholar
  11. 11.
    Mahl, T., Mayer, A.E., Hildebrandt, A., Sawodny, O.: A variable curvature modeling approach for kinematic control of continuum manipulators. In: 2013 American Control Conference, pp. 4945–4950 (2013)Google Scholar
  12. 12.
    Trivedi, D., Lotfi, A., Rahn, C.: Geometrically exact models for soft robotic manipulators. IEEE Trans. Robot. 4(24), 773–780 (2008)CrossRefGoogle Scholar
  13. 13.
    Walker, I.D.: Continuous backbone ‘Continuum’ robot manipulators. Int. Sch. Res. Not. (ISRN Robot.) 2013, e726506 (2013)Google Scholar
  14. 14.
    Tunay, I.: Spatial continuum models of rods undergoing large deformation and inflation. IEEE Trans. Robot. 29(2), 297–307 (2013)CrossRefGoogle Scholar
  15. 15.
    Chen, G., Pham, M.T., Redarce, T.: sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Rob. Auton. Syst. 57(6–7), 712–722 (2009)CrossRefGoogle Scholar
  16. 16.
    Fraś, J., Czarnowski, J., Maciaś, M., Główka, J., Cianchetti, M., Menciassi, A.: New STIFF-FLOP module construction idea for improved actuation and sensing. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2901–2906 (2015)Google Scholar
  17. 17.
    Conrad, B., Zinn, M.: Closed loop task space control of an interleaved continuum-rigid manipulator. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1743–1750 (2015)Google Scholar
  18. 18.
    Jung, J., Penning, R.S., Zinn, M.R.: A modeling approach for robotic catheters: effects of nonlinear internal device friction. Adv. Robot. 28(8), 557–572 (2014)CrossRefGoogle Scholar
  19. 19.
    Sadati, S., Naghibi, S., Naraghi, M.: An automatic algorithm to derive linear vector form of lagrangian equation of motion with collision and constraint. Procedia Comput. Sci. 76, 217–222 (2015)CrossRefGoogle Scholar
  20. 20.
    Trivedi, D., Rahn, C.D.: Model-based shape estimation for soft robotic manipulators: the planar case. J. Mech. Robot. 6(2), 021005 (2014)CrossRefGoogle Scholar
  21. 21.
    Liu, W., Rahn, C.: Fiber-reinforced membrane models of McKibben actuators. J. Appl. Mech. 70(6), 853–859 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. V. the problem of flexure. Proc. Roy. Soc. A: Math., Phy. Eng. Sci. 195(1043), 463–473 (1949)Google Scholar
  23. 23.
    Gent, A.N.: Engineering with rubber: how to design rubber components. Carl Hanser Verlag, GmbH Co KG (2012)Google Scholar
  24. 24.
    Mahvash, M., Dupont, P.E.: Stiffness control of a continuum manipulator in contact with a soft environment. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 863–870 (2010)Google Scholar
  25. 25.
    Juvinall, R.C., Marshek, K.M.: Fundamentals of Machine Component Design, vol. 83. Wiley, New York (2006)Google Scholar
  26. 26.
    Neumann, M., Burgner-Kahrs, J.: Considerations for follow-the-leader motion of extensible tendon-driven continuum robots (2016)Google Scholar
  27. 27.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)CrossRefGoogle Scholar
  28. 28.
    Duriez, C., Bieze, T.: Soft robot modeling, simulation and control in real-time. In: Laschi, C., Rossiter, J., Iida, F., Cianchetti, M., Margheri, L. (eds.) Soft Robotics: Trends, Applications and Challenges. Biosystems & Biorobotics, vol. 17, pp. 103–109. Springer, Cham (2017), doi: 10.1007/978-3-319-46460-2_13

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. M. Hadi Sadati
    • 1
    Email author
  • Seyedeh Elnaz Naghibi
    • 2
  • Ali Shiva
    • 1
  • Ian D. Walker
    • 3
  • Kaspar Althoefer
    • 2
  • Thrishantha Nanayakkara
    • 1
    • 4
  1. 1.Department of Informatics, Centre for Robotics Research (CoRe)King’s College LondonLondonUK
  2. 2.School of Engineering and Materials Science, Queen MaryUniversity of LondonLondonUK
  3. 3.Department of Electrical and Computer EngineeringClemson UniversityClemsonUSA
  4. 4.Dyson School of Design EngineeringImperial College LondonLondonUK

Personalised recommendations