Formal Method for Mission Controller Generation of a Mobile Robot

  • Silvain Louis
  • Karen Godary-DejeanEmail author
  • Lionel LapierreEmail author
  • Thomas ClaverieEmail author
  • Sébastien VillégerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10454)


This article presents a methodology for generating a real-time mission controller of a submarine robot. The initial description of the mission considers the granularity constraints associated with the actors defining the mission. This methodology incorporates a formal analysis of the different possibilities for success of the mission from the models of each component involved in the description of the mission. This article ends illustrating this methodology with the generation of a real robotic mission for marine biodiversity assessment.


Formal analysis Mission controller Mobile robot 



The authors graciously thank the CUFR, FEDER, NUMEV and Agglo Beziers Mediterranee for their support to this work.


  1. 1.
    Edgar, G.J., Barrett, N.S., Morton, A.J.: Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. J. Exp. Mar. Biol. Ecol. 308(2), 269–290 (2004)CrossRefGoogle Scholar
  2. 2.
    Adolf, F., Andert, F.: Onboard mission management for a VTOL UAV using sequence and supervisory control. Cutting Edge Robot. 2010, 301–317 (2010)Google Scholar
  3. 3.
    NATO and RTO, Coalition Battle Management Language (C-BML), Technical report (2012)Google Scholar
  4. 4.
    Meduna, A.: Formal Languages and Computation: Models and Their Applications. CRC Press, Boca Raton (2014)zbMATHGoogle Scholar
  5. 5.
    Fernández-Perdomo, E., Cabrera-Gómez, J., Domínguez-Brito, A.C., Hernández-Sosa, D.: Mission specification in underwater robotics. J. Phys. Agents 4(1), 25–34 (2010)Google Scholar
  6. 6.
    Berry, G., Gonthier, G.: The esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19, 87–152 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ingham, M., Ragno, R., Williams, B.C.: A reactive model-based programming language for robotic space explorers. In: Proceedings of ISAIRAS-01 (2001)Google Scholar
  8. 8.
    Marchand, H., Rutten, É., Le Borgne, M., Samaan, M.: Formal verification of programs specified with signal: application to a power transformer station controller. Sci. Comput. Program. 41(1), 85–104 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Marchand, H., Bournai, P., Le Borgne, M., Le Guernic, P.: Synthesis of discrete controllers based on the signal environment. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. ECC, vol. 569, pp. 479–480. Springer, Boston (2000)CrossRefGoogle Scholar
  10. 10.
    Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)CrossRefGoogle Scholar
  11. 11.
    Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Thanh-Hung, N., Sifakis, J.: Rigorous component-based system design using the BIP framework. IEEE Softw. 28, 41–48 (2011)CrossRefGoogle Scholar
  13. 13.
    Basu, A., Mounier, L., Poulhiès, M., Pulou, J., Sifakis, J.: Using BIP for modeling and verification of networked systems - a case study on TinyOS-based networks. In: Proceedings of the 6th IEEE International Symposium on Network Computing and Applications, NCA 2007, pp. 257–260 (2007)Google Scholar
  14. 14.
    Ropars, B., Lasbouygues, A., Lapierre, L., Andreu, D.: Thruster’s dead-zones compensation for the actuation system of an underwater vehicle. In: ECC: European Control Conference, Linz, Austria, July 2015Google Scholar
  15. 15.
    Jaiem, L., Lapierre, L., GodaryDejean, K., Crestani, D.: Toward performance guarantee for autonomous mobile robotic mission: an approach for hardware and software resources management. In: TAROS 2016, Sheffield, UK (2016)Google Scholar
  16. 16.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)CrossRefzbMATHGoogle Scholar
  17. 17.
    Alur, R.: Timed Automata. University of Pennsylvania, Technical report (1998)Google Scholar
  18. 18.
    Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina-construction of abstract state spaces for petri nets and time petri nets. Int. J. Prod. Res. 42(14), 2741–2756 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LIRMM, University of MontpellierMontpellierFrance
  2. 2.MARBEC, CUFR MayotteDembéni, MayotteFrance
  3. 3.MARBEC, CNRSMontpellierFrance

Personalised recommendations