Skip to main content

Cancer Stem Cells

  • Chapter
  • First Online:

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

Cancer is a group of diseases characterized by uncontrolled cell growth, invasion of adjacent normal tissue, and metastasis to distant organs. The cancerous cells have their origin in normal cells, and they contain genetic changes causing increased cell proliferation and decreased cell apoptosis. Multiple therapeutic strategies, including surgery, radiation, and chemotherapy, have been used for treatment which often achieve control of the primary cancer. However, cancer recurrence and metastasis often occur. At this stage, the tumor cells are often more aggressive and do not respond to treatment as well, leading to death. A major question in cancer therapy is why the apparently effective treatment cannot get rid of all the tumor cells. Recent studies have indicated the presence of cancer stem cells (CSCs) that can generate tumors and are resistant to treatments. It is hypothesized that tumors arise from a single CSC, but the resulting tumor contains many cell types with various proliferation and differentiation capacities. This tumor heterogeneity led to the cancer cell hierarchy theory, with cancer stem cells sitting at the apex giving rise to progenitor cells and ultimately mature and differentiated tumor cells. Similar to normal stem cells, CSCs are resistant to chemotherapy and radiation. As a result, CSCs that survive treatment can cause relapse by repopulating the tumor. With mounting evidences suggesting the existence of CSCs in many human tumors, it is important to identify them by specific markers and understand the signaling pathways contributing to their unique biological properties and their function in tumor initiation, metastasis, and recurrence. It is believed that cancer cure can be achieved only if CSCs can be targeted.

This is a preview of subscription content, log in via an institution.

References

  1. Southam C, Brunschwig A. Quantitative studies of autotransplantation of human cancer. Cancer. 1961;14:971–8.

    Article  Google Scholar 

  2. Bruce WR, van der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 1963;199:79–80.

    Article  CAS  PubMed  Google Scholar 

  3. Fidler I. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 1978;36:2651–60.

    Google Scholar 

  4. Gerlinger M, Rowan A, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):833–92.

    Article  Google Scholar 

  5. Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  6. Furth J, Kahn M. The transmission of leukemia of mice with a single cell. Cancer Res. 1937;31:276–82.

    Google Scholar 

  7. Park CH, Bergsagel DE, McCulloch EA. Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst. 1971;46:411–22.

    CAS  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha M, et al. Prospective identification of tumorigenic breast cancer cells. PNAS. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh S, Hawkins C, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  10. Ricci-Vitiani L, Lombardi DG, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  PubMed  Google Scholar 

  11. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65:3025–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hermann PC, Huber SL, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.

    Article  CAS  PubMed  Google Scholar 

  13. Fang D, Nguyen TK, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrandina G, Martinelli E, et al. CD133 antigen expression in ovarian cancer. BMC Cancer. 2009;9:221.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Silva IA, Bai S, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71(11):3991–4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kryczek I, Liu S, et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 2012;130(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  17. Collins AT, Berry PA, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.

    Article  CAS  PubMed  Google Scholar 

  18. Patrawala L, Calhoun-Davis T, et al. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+ α[alpha]2β[beta]1+ cell population is enriched in tumor-initiating cells. Cancer Res. 2007;67:6796–805.

    Article  CAS  PubMed  Google Scholar 

  19. Roudier MP, True LD, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol. 2003;34(7):646–53.

    Article  PubMed  Google Scholar 

  20. Craft N, Chhor C, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 1999;59:5030–6.

    CAS  PubMed  Google Scholar 

  21. Patrawala L, Calhoun T, et al. Highly purified CD44. Prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25:1696–708.

    Article  CAS  PubMed  Google Scholar 

  22. Hurt EM, Kawasaki BT, et al. CD44+CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van den Hoogen C, van der Horst G, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70(12):5163–73.

    Article  PubMed  Google Scholar 

  24. Qin J, Liu X, et al. The PSA–/lo prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell. 2012;10:556–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajasekhar VK, Studer L, et al. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun. 2011;2:162.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Domingo-Domenech J, Vidal SJ, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of Notch and Hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22:373–88.

    Article  CAS  PubMed  Google Scholar 

  27. Okada H, et al. Virchows Arch A Pathol Anat Histopathol. 1992;421:157.

    Article  CAS  PubMed  Google Scholar 

  28. Parsons JK, Gage WR, Nelson WG, De Marzo AM. Urology. 2001;58:619.

    Article  CAS  PubMed  Google Scholar 

  29. Ma X, Ziel-van d, Made AC, Autar B, et al. Targeted Biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res. 2005;63(13):5730–9.

    Article  Google Scholar 

  30. Wang X, Julio MK, et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature. 2009;461:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mulholland DJ, Xin L, et al. Lin−Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res. 2009;69(22):8555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lawson DA, Zong Y, et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. PNAS. 2009;107(6):2610–5.

    Article  Google Scholar 

  33. Goldstein AS, Huang J, et al. Identification of a cell of origin for human prostate cancer. Science. 2010;329:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stoyanova T, Cooper AR, et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. PNAS. 2013;110(50):20111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor RA, Toivanen R, et al. Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cell. 2012;30(6):1087–96.

    Article  CAS  Google Scholar 

  36. Choi N, Zhang B, et al. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 2012;21(2):253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lapuk AV, Wu C, et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J Pathol. 2012;227(3):286–97. https://doi.org/10.1002/path.4047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H, Sun Y, et al. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer. 2012;19:321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan HL, Sood A, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res. 2014;20(4):890–903.

    Article  CAS  PubMed  Google Scholar 

  40. Beltran H, Rickman DS, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1(6):487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19:683–97.

    Article  CAS  PubMed  Google Scholar 

  42. Hsieh I, Chang K, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by down-regulating the Wnt/betacatenin signaling pathway. Carcinogenesis. 2013;34:530–8.

    Article  CAS  PubMed  Google Scholar 

  43. Lukacs RU, Memarzadeh S, et al. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7:682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kroon P, Berry PA, et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013;73(16):5288–98.

    Article  CAS  PubMed  Google Scholar 

  45. Schroeder A, Herrmann A, et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 2013;74(4):1227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karhadkar SS, Bova GS, et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707–12.

    Article  CAS  PubMed  Google Scholar 

  47. Sanchez P, Hernandez AM, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. PNAS. 2004;101(34):12561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dubrovska A, Kim S, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. PNAS. 2009;106(1):268–73.

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Garcia AJ, et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. PNAS. 2006;103(5):1480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu K, Lin B, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 2013;25:1264–71.

    Article  CAS  PubMed  Google Scholar 

  51. Jia X, Li X, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Biol. 2011;3:230–8.

    CAS  Google Scholar 

  52. Rybak AP, Tang D. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal. 2013;25:2734–42.

    Article  CAS  PubMed  Google Scholar 

  53. Lin F, Lin P, et al. Sox2 targets cyclinE, p27 and survivin to regulate androgen-independent human prostate cancer cell proliferation and apoptosis. Cell Prolif. 2012;45:207–16.

    Article  CAS  PubMed  Google Scholar 

  54. Rajasekhar VK, Studer L, et al. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun. 2011 Jan;2:162.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaoti Huang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Li, Y., Huang, J. (2018). Cancer Stem Cells. In: Robinson, B., Mosquera, J., Ro, J., Divatia, M. (eds) Precision Molecular Pathology of Prostate Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-64096-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64096-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64094-5

  • Online ISBN: 978-3-319-64096-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics