Advertisement

NEO 2016 pp 263-279 | Cite as

Optimal Sizing of Amplifiers by Evolutionary Algorithms with Integer Encoding and \(g_m/I_D\) Design Method

  • Adriana C. Sanabria-Borbón
  • Esteban Tlelo-Cuautle
  • Luis Gerardo de la Fraga
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 731)

Abstract

The optimal sizing of analog integrated circuits (ICs) by evolutionary algorithms (EAs) has the challenge of reducing the search spaces of the design variables, guaranteeing the proper bias conditions and providing manufacturable feasible solutions. In this manner, this chapter applies two EAs, namely the non-dominated sorting genetic algorithm (NSGA-II) and differential evolution (DE) to optimize operational amplifiers designed with complementary metal-oxide-semiconductor (CMOS) IC fabrication technology. Those EAs link the simulation program with IC emphasis (SPICE) to evaluate performances characteristics, and apply the \(g_m/I_D\) design method to guarantee bias conditions and to reduce the search spaces for the design variables of the MOS transistors, which are associated to the width (W) and length (L) of their channels. The W/L design variables are encoded with integer values that are converted to multiples of the IC fabrication technology within SPICE. That way, integer encoding of the design variables provides manufacturable transistor sizes, while the EAs are accelerated by using chromosomes with reduced search spaces provided by the \(g_m/I_D\) design method. As examples, two CMOS operational transconductance amplifiers (OTAs) are sized with this optimization approach to highlight the EA’s advantages when applying \(g_m/I_D\) design method and integer encoding.

Keywords

Multi-objective optimization Circuit sizing \(g_m/I_D\) design method NSGA-II Differential evolution algorithm Operational transconductance amplifier MOS transistor SPICE 

Notes

Acknowledgements

This work is partially supported by CONACyT-Mexico under grant 237991. The first author want to thank the Administrative Department of Science, Technology and Innovation of Colombia Colciencias for the scholarship.

References

  1. 1.
    Guerra-Gómez, I., McConaghy, T., Tlelo-Cuautle, E.: Operating-point driven formulation for analog computer-aided design. Analog Integr. Circuits Signal Process. 74(2), 345–353 (2013)CrossRefGoogle Scholar
  2. 2.
    Graeb, H.E.: Analog Design Centering and Sizing. Springer, Berlin (2007)Google Scholar
  3. 3.
    McConaghy, T., Breen, K., Dyck, J., Gupta, A.: Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide. Springer, Berlin (2013)CrossRefGoogle Scholar
  4. 4.
    Rocha, F.A., Martins, R.M., Lourenco, N.C., Horta, N.C.: State-of-the-art on automatic analog IC sizing. Electronic Design Automation of Analog ICs Combining Gradient Models with Multi-Objective Evolutionary Algorithms. SpringerBriefs in Applied Sciences and Technology, pp. 7–22. Springer, Berlin (2014)CrossRefGoogle Scholar
  5. 5.
    Guerra-Gomez, I., Tlelo-Cuautle, E.: Sizing analog integrated circuits by current-branches-bias assignments with heuristics. Elektronika ir Elektrotechnika 19(10), 81–86 (2013)CrossRefGoogle Scholar
  6. 6.
    Silveira, F., Flandre, D., Jespers, P.G.A.: A \(g_m/I_D\) based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator. Solid State Circuits IEEE 31(9), 1314–1319 (1996)CrossRefGoogle Scholar
  7. 7.
    Jespers, P.: The gm/ID Methodology, a Sizing Tool For Low-voltage Analog CMOS Circuits. Springer, Boston (2010)CrossRefGoogle Scholar
  8. 8.
    Tlelo-Cuautle, E., Sanabria-Borbon, A.C.: Optimising operational amplifiers by evolutionary algorithms and gm/id method. Int. J. Electron. 103(10), 1665–1684 (2016)CrossRefGoogle Scholar
  9. 9.
    Kotti, M., Fakhfakh, M., Fino, M.H.: On the dynamic rounding-off in analogue and RF optimal circuit sizing. Int. J. Electron. 101(4), 452–468 (2014)CrossRefGoogle Scholar
  10. 10.
    Sanabria-Borbón, A.C., Tlelo-Cuautle, E.: Sizing analogue integrated circuits by integer encoding and NSGA-II. IETE Tech. Rev. 0(0):1–7, 0Google Scholar
  11. 11.
    Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. on Evol. Comput. 14(1), 112–132 (2010)CrossRefGoogle Scholar
  12. 12.
    Schütze, O., Martín, A., Lara, A., Alvarado, S., Salinas, E., Coello Coello, C.A.: The directed search method for multi-objective memetic algorithms. Comput. Optim. Appl. 63(2), 305–332 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xiong, F.-R., Qin, Z.-C., Xue, Y., Schütze, O., Ding, Q., Sun, J.-Q.: Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1465–1473 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)CrossRefGoogle Scholar
  15. 15.
    Luna, F., Zavala, G.R., Nebro, A.J., Durillo, J.J., Coello Coello, C.A.: Distributed multi-objective metaheuristics for real-world structural optimization problems. Comput. J. 59(6), 777–792 (2016)Google Scholar
  16. 16.
    Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.A.: Structural design using multi-objective metaheuristics. comparative study and application to a real-world problem. Struct. Multidiscip. Optim. 53(3), 545–566 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sapatnekar, S.S., Rao, V.B., Vaidya, P.M., Sung-Mo Kang.: An exact solution to the transistor sizing problem for CMOS circuits using convex optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12(11), 1621–1634 (1993)Google Scholar
  18. 18.
    Mandal, P., Visvanathan, V.: CMOS op-amp sizing using a geometric programming formulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(1), 22–38 (2001)CrossRefGoogle Scholar
  19. 19.
    Abbas, Z., Olivieri, M.: Optimal transistor sizing for maximum yield in variation-aware standard cell design. Int. J. Circuit Theory Appl. 44(7), 1400–1424 (2015)CrossRefGoogle Scholar
  20. 20.
    Shokouhifar, M., Jalali, A.: Evolutionary based simplified symbolic PSRR analysis of analog integrated circuits. Analog Integr. Circuits Signal Process. 86(2), 189–205 (2016)CrossRefGoogle Scholar
  21. 21.
    de la Fraga, L.G., Guerra-Gomez, I., Tlelo-Cuautle, E.: On the selection of solutions in multiobjective analog circuit design. NEO 2015, pp. 377–389. Springer, Berlin (2017)CrossRefGoogle Scholar
  22. 22.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuos spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Mezura, E., Velázquez, J., Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: CCO06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 485–492. ACM Press, New York (2006)Google Scholar
  24. 24.
    Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ao, Y., Chi, H.: Experimental study on differential evolution strategies. In: 2009 WRI Global Congress on Intelligent Systems, pp. 19–24 (2009)Google Scholar
  26. 26.
    Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. Wiley, New York (2009)CrossRefGoogle Scholar
  27. 27.
    Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 171(2), 674–692 (2006)CrossRefzbMATHGoogle Scholar
  28. 28.
    Kukkonen, S., Coello Coello, C.A.: Generalized differential evolution for numerical and evolutionary optimization. NEO 2015, pp. 253–279. Springer, Berlin (2017)CrossRefGoogle Scholar
  29. 29.
    Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  30. 30.
    Luo, B., Zheng, J., Xie, J., Wu, J.: Dynamic crowding distance-a new diversity maintenance strategy for MOEAs. In: 2008 Fourth International Conference on Natural Computation. pp. 580–585 (2008)Google Scholar
  31. 31.
    Guerra-Gomez, I., Tlelo-Cuautle, E., de la Fraga, L.G.: Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput. 222, 167–176 (2013)zbMATHGoogle Scholar
  32. 32.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., Goldberg, D.E., Koza, J.R.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  33. 33.
    Gray, P.R., Hurst, P.J., Lewis, S.H.: Analysis and Design of Analog Integrated Circuits, 5th edn. Wiley, New York (2009)Google Scholar
  34. 34.
    Arslan, E., Metin, B., Cicekoglu, O.: MOSFET-only multi-function biquad filter. AEU-Int. J. Electron. Commun. 69(12), 7–10 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhang, H., Sanchez-Sinencio, E.: Linearization techniques for CMOS low noise amplifiers: a tutorial. In: IEEE Trans. Circuits Syst. I Regul. pap. 58(1), 22–36 (2011)Google Scholar
  36. 36.
    Jack, O., Ferreira, P.M.: A \(g_m/I_D\)-based noise optimization for CMOS folded-cascode operational amplifier. IEEE Trans. Circuits Syst. II Express Briefs 61(10), 783–787 (2014)CrossRefGoogle Scholar
  37. 37.
    Lin, C-W., Sue, P-D., Shyu, Y-T., Chang,S-J.: A bias-driven approach for automated design of operational amplifiers. In: International Symposium on VLSI Design, Automation and Test, 2009. VLSI-DAT ’09. pp. 118–121 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adriana C. Sanabria-Borbón
    • 1
  • Esteban Tlelo-Cuautle
    • 2
    • 3
  • Luis Gerardo de la Fraga
    • 2
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Computer Science DepartmentCinvestavMexico CityMexico
  3. 3.Department of ElectronicsINAOETonantzintla, PueblaMexico

Personalised recommendations