Skip to main content

Cancer Research in Space

Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

Real and simulated microgravity (μg) created either by spaceflights or by special Earth-based devices provide a unique environment for studying and influencing tumor cell processes. By investigating growing cancer cells in μg, researchers have shown that μg-conditions change the microtubules and mitochondria of cancer cells, modify the production and structure of cytoskeletal and extracellular matrix proteins, induce apoptosis and change the secretome. It was also observed that some of the cells form three-dimensional structures, which resemble either spheres or the organ structures from which the cells originate. Cancer cells included in “spheroids” look different and behave differently to those grown on a flat surface, more closely mimicking tumor biology in human organisms. Results may be used to rethink cancer research on Earth with the aim of developing new drugs and cancer treatment strategies. The following chapter summarizes research on cancer cells under the influence of real and simulated μg with a special focus on thyroid cancer, breast cancer and malignant melanoma.

Keywords

  • Microgravity
  • Multicellular Spheroids
  • Apoptosis
  • Cytoskeleton
  • Extracellular Matrix
  • Angiogenesis

This is a preview of subscription content, access via your institution.

Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5

References

  • Barth A, Wanek LA, Morton DL (1995) Prognostic factors in 1,521 melanoma patients with distant metastases. J Am Coll Surg 181(3):193–201

    Google Scholar 

  • Baudin E, Schlumberger M (2007) New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol 8(2):148–156. doi:10.1016/s1470-2045(07)70034-7

    CrossRef  Google Scholar 

  • Bauer J, Wehland M, Pietsch J, Sickmann A, Weber G, Grimm D (2016) Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research. Microgravity Sci Technol 28(3):357–365. doi:10.1007/s12217-015-9451-z

    CrossRef  Google Scholar 

  • Becker JL, Blanchard DK (2007) Characterization of primary breast carcinomas grown in three-dimensional cultures. J Surg Res 142(2):256–262. doi:10.1016/j.jss.2007.03.016

    CrossRef  Google Scholar 

  • Becker JL, Souza GR (2013) Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer 13(5):315–327. doi:10.1038/nrc3507

    CrossRef  Google Scholar 

  • Becker JL, Prewett TL, Spaulding GF, Goodwin TJ (1993) Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations. J Cell Biochem 51(3):283–289. doi:10.1002/jcb.240510307

    CrossRef  Google Scholar 

  • Berwick M, Wiggins C (2006) The current epidemiology of cutaneous malignant melanoma. Front Biosci 11:1244–1254

    CrossRef  Google Scholar 

  • Borst AG, van Loon JJWA (2008) Technology and developments for the random positioning machine, RPM. Microgravity Sci Technol 21(4):287. doi:10.1007/s12217-008-9043-2

    CrossRef  Google Scholar 

  • Carling T, Udelsman R (2014) Thyroid cancer. Annu Rev Med 65:125–137. doi:10.1146/annurev-med-061512-105739

    CrossRef  Google Scholar 

  • Chang TT, Hughes-Fulford M (2009) Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 15(3):559–567. doi:10.1089/ten.tea.2007.0434

    CrossRef  Google Scholar 

  • Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333. doi:10.1200/jco.2006.09.1066

    CrossRef  Google Scholar 

  • Chopra V, Dinh TV, Hannigan EV (1997) Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell Dev Biol Anim 33(6):432–442. doi:10.1007/s11626-997-0061-y

    CrossRef  Google Scholar 

  • Chung JH, Yi E, Ahn CB, Lee S, Kim KT (2016) Effects of simulated microgravital environment on lung cancer cells. Chest 150(4):26A. doi:10.1016/j.chest.2016.08.032

    CrossRef  Google Scholar 

  • Clejan S, O’Connor KC, Cowger NL, Cheles MK, Haque S, Primavera AC (1996) Effects of simulated microgravity on DU 145 human prostate carcinoma cells. Biotechnol Bioeng 50(5):587–597. doi:10.1002/(sici)1097-0290(19960605)50:5<587::aid-bit14>3.0.co;2-g

    CrossRef  Google Scholar 

  • Clejan S, O’Connor K, Rosensweig N (2001) Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J Cell Mol Med 5(1):60–73. doi:10.1111/j.1582-4934.2001.tb00138.x

    CrossRef  Google Scholar 

  • Corydon TJ, Kopp S, Wehland M, Braun M, Schutte A, Mayer T, Hulsing T, Oltmann H, Schmitz B, Hemmersbach R, Grimm D (2016) Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 6:20043. doi:10.1038/srep20043

    CrossRef  Google Scholar 

  • Cubano LA, Lewis ML (2000) Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). Exp Gerontol 35(3):389–400

    CrossRef  Google Scholar 

  • Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, Caillou B, Ricard M, Lumbroso JD, De Vathaire F, Schlumberger M (2006) Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 91(8):2892–2899. doi:10.1210/jc.2005-2838

    CrossRef  Google Scholar 

  • Eiermann P, Kopp S, Hauslage J, Hemmersbach R, Gerzer R, Ivanova K (2013) Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci Technol 25(3):153–159. doi:10.1007/s12217-013-9341-1

    CrossRef  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi:10.1002/ijc.29210

    CrossRef  Google Scholar 

  • Fernandez-Garcia B, Eiro N, Marin L, Gonzalez-Reyes S, Gonzalez LO, Lamelas ML, Vizoso FJ (2014) Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology 64(4):512–522. doi:10.1111/his.12300

    CrossRef  Google Scholar 

  • Ferranti F, Caruso M, Cammarota M, Masiello MG, Corano Scheri K, Fabrizi C, Fumagalli L, Schiraldi C, Cucina A, Catizone A, Ricci G (2014) Cytoskeleton modifications and autophagy induction in TCam-2 seminoma cells exposed to simulated microgravity. Biomed Res Int 2014:904396. doi:10.1155/2014/904396

    CrossRef  Google Scholar 

  • Frandsen S, Kopp S, Wehland M, Pietsch J, Infanger M, Grimm D (2016) Latest Results for anti-angiogenic drugs in cancer treatment. Curr Pharm Des 22(39):5927–5942

    CrossRef  Google Scholar 

  • Goodwin TJ, Jessup JM, Wolf DA (1992) Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell Dev Biol 28a(1):47–60

    CrossRef  Google Scholar 

  • Goodwin TJ, Prewett TL, Spaulding GF, Becker JL (1997) Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics. In Vitro Cell Dev Biol Anim 33(5):366–374. doi:10.1007/s11626-997-0007-4

    CrossRef  Google Scholar 

  • Goretzki PE, Frilling A, Simon D, Roeher HD (1990) Growth regulation of normal thyroids and thyroid tumors in man. Recent Results Cancer Res 118:48–63

    CrossRef  Google Scholar 

  • Granet C, Boutahar N, Vico L, Alexandre C, Lafage-Proust MH (2001) MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts. Biochem Biophys Res Commun 284(3):622–631. doi:10.1006/bbrc.2001.5023

    CrossRef  Google Scholar 

  • Grimm D, Bauer J, Hofstadter F, Riegger GA, Kromer EP (1997) Characteristics of multicellular spheroids formed by primary cultures of human thyroid tumor cells. Thyroid 7(6):859–865. doi:10.1089/thy.1997.7.859

    CrossRef  Google Scholar 

  • Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schoberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002a) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16(6):604–606

    Google Scholar 

  • Grimm D, Kossmehl P, Shakibaei M, Schulze-Tanzil G, Pickenhahn H, Bauer J, Paul M, Cogoli A (2002b) Effects of simulated microgravity on thyroid carcinoma cells. J Gravit Physiol 9(1):P253–P256

    Google Scholar 

  • Grimm D, Wise P, Lebert M, Richter P, Baatout S (2011) How and why does the proteome respond to microgravity? Expert Rev Proteomics 8(1):13–27. doi:10.1586/epr.10.105

    CrossRef  Google Scholar 

  • Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Ulbrich C, Magnusson NE, Infanger M, Bauer J (2014) Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev 20(6):555–566. doi:10.1089/ten.TEB.2013.0704

    CrossRef  Google Scholar 

  • Grosse J, Wehland M, Pietsch J, Schulz H, Saar K, Hubner N, Eilles C, Bauer J, Abou-El-Ardat K, Baatout S, Ma X, Infanger M, Hemmersbach R, Grimm D (2012) Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 26(12):5124–5140. doi:10.1096/fj.12-215749

    CrossRef  Google Scholar 

  • Hammond TG, Benes E, O’Reilly KC, Wolf DA, Linnehan RM, Taher A, Kaysen JH, Allen PL, Goodwin TJ (2000) Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle. Physiol Genomics 3(3):163–173

    Google Scholar 

  • Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1):1–17. doi:10.1089/ast.2012.0876

    CrossRef  Google Scholar 

  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15. doi:10.1016/j.jbiotec.2010.01.012

    CrossRef  Google Scholar 

  • Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C, Tell G, Salzano AM, Scaloni A, Vuttariello E, Chiappetta G, Formisano S, Leonardi A (2008) The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci U S A 105(37):14058–14063. doi:10.1073/pnas.0710846105

    CrossRef  Google Scholar 

  • Infanger M, Kossmehl P, Shakibaei M, Bauer J, Kossmehl-Zorn S, Cogoli A, Curcio F, Oksche A, Wehland M, Kreutz R, Paul M, Grimm D (2006) Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res 324(2):267–277. doi:10.1007/s00441-005-0142-8

    CrossRef  Google Scholar 

  • Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding GF (1997) Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev Biol Anim 33(6):459–466. doi:10.1007/s11626-997-0064-8

    CrossRef  Google Scholar 

  • Insua-Rodríguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55. doi:10.1016/j.addr.2015.12.017

    CrossRef  Google Scholar 

  • Ivanova K, Das PK, van den Wijngaard RM, Lenz W, Klockenbring T, Malcharzyk V, Drummer C, Gerzer R (2001) Differential expression of functional guanylyl cyclases in melanocytes: absence of nitric-oxide-sensitive isoform in metastatic cells. J Invest Dermatol 116(3):409–416. doi:10.1046/j.1523-1747.2001.01255.x

    CrossRef  Google Scholar 

  • Ivanova K, Eiermann P, Tsiockas W, Hauslage J, Hemmersbach R, Gerzer R (2011) Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness. Acta Astronaut 68(7–8):652–655. doi:10.1016/j.actaastro.2010.08.002

    CrossRef  Google Scholar 

  • Janssen ME, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D (2006) Three-dimensional structure of vinculin bound to actin filaments. Mol Cell 21(2):271–281. doi:10.1016/j.molcel.2005.11.020

    CrossRef  Google Scholar 

  • Jelkmann W (2001) Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem 47(4):617–623

    Google Scholar 

  • Jessup JM, Brown D, Fitzgerald W, Ford RD, Nachman A, Goodwin TJ, Spaulding G (1997) Induction of carcinoembryonic antigen expression in a three-dimensional culture system. In Vitro Cell Dev Biol Anim 33(5):352–357. doi:10.1007/s11626-997-0005-6

    CrossRef  Google Scholar 

  • Jessup JM, Frantz M, Sonmez-Alpan E, Locker J, Skena K, Waller H, Battle P, Nachman A, Bhatti WME, Thomas DA, Curbeam RL Jr, Baker TL, Goodwin TJ (2000) Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cell Dev Biol Anim 36(6):367–373

    CrossRef  Google Scholar 

  • Kaneko T, Sasaki S, Umemoto Y, Kojima Y, Ikeuchi T, Kohri K (2008) Simulated conditions of microgravity increases progesterone production in I–10 cells of Leydig tumor cell line. Int J Urol 15(3):245–250. doi:10.1111/j.1442-2042.2007.01972.x

    CrossRef  Google Scholar 

  • Kaur P, Ward B, Saha B, Young L, Groshen S, Techy G, Lu Y, Atkinson R, Taylor CR, Ingram M, Imam SA (2011) Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue. J Histochem Cytochem 59(12):1087–1100. doi:10.1369/0022155411423680

    CrossRef  Google Scholar 

  • Klaus DM (2001) Clinostats and bioreactors. Gravit Space Biol Bull 14(2):55–64

    Google Scholar 

  • Kobayashi K, Kambe F, Kurokouchi K, Sakai T, Ishiguro N, Iwata H, Koga K, Gruener R, Seo H (2000) TNF-alpha-dependent activation of NF-kappa B in human osteoblastic HOS-TE85 cells is repressed in vector-averaged gravity using clinostat rotation. Biochem Biophys Res Commun 279(1):258–264. doi:10.1006/bbrc.2000.3945

    CrossRef  Google Scholar 

  • Kong X, Wang X, Xu W, Behera S, Hellermann G, Kumar A, Lockey RF, Mohapatra S, Mohapatra SS (2008) Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 68(1):249–256. doi:10.1158/0008-5472.can-07-3086

    CrossRef  Google Scholar 

  • Kopp S, Warnke E, Wehland M, Aleshcheva G, Magnusson NE, Hemmersbach R, Corydon TJ, Bauer J, Infanger M, Grimm D (2015) Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci Rep 5:16691. doi:10.1038/srep16691

    CrossRef  Google Scholar 

  • Kopp S, Slumstrup L, Corydon TJ, Sahana J, Aleshcheva G, Islam T, Magnusson NE, Wehland M, Bauer J, Infanger M, Grimm D (2016) Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the random positioning machine. Sci Rep 6:26887. doi:10.1038/srep26887

    CrossRef  Google Scholar 

  • Kossmehl P, Shakibaei M, Cogoli A, Pickenhahn H, Paul M, Grimm D (2002) Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J Gravit Physiol 9(1):P295–P296

    Google Scholar 

  • Kossmehl P, Shakibaei M, Cogoli A, Infanger M, Curcio F, Schonberger J, Eilles C, Bauer J, Pickenhahn H, Schulze-Tanzil G, Paul M, Grimm D (2003) Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 144(9):4172–4179. doi:10.1210/en.2002-0171

    CrossRef  Google Scholar 

  • Kristensen TB, Knutsson ML, Wehland M, Laursen BE, Grimm D, Warnke E, Magnusson NE (2014) Anti-vascular endothelial growth factor therapy in breast cancer. Int J Mol Sci 15(12):23024–23041. doi:10.3390/ijms151223024

    CrossRef  Google Scholar 

  • Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int 23(3):157–161. doi:10.1006/cbir.1999.0384

    CrossRef  Google Scholar 

  • Kunz-Schughart LA, Heyder P, Schroeder J, Knuechel R (2001) A heterologous 3-D co-culture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 266(1):74–86. doi:10.1006/excr.2001.5210

    CrossRef  Google Scholar 

  • Laursen R, Wehland M, Kopp S, Pietsch J, Infanger M, Grosse J, Grimm D (2016) Effects and role of multikinase inhibitors in thyroid cancer. Curr Pharm Des 22(39):5915–5926

    CrossRef  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12(11):1007–1018

    Google Scholar 

  • Lewis ML, Cubano LA, Zhao B, Dinh HK, Pabalan JG, Piepmeier EH, Bowman PD (2001) cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J 15(10):1783–1785

    Google Scholar 

  • Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z (2009) Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma 238(1):23. doi:10.1007/s00709-009-0068-1

    CrossRef  Google Scholar 

  • Licato LL, Prieto VG, Grimm EA (2001) A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell Dev Biol Anim 37(3):121–126. doi:10.1290/1071-2690(2001)037<0121:anpmoh>2.0.co;2

    CrossRef  Google Scholar 

  • Lorusso L, Newbold K (2015) Lenvatinib: a new option for the treatment of advanced iodine refractory differentiated thyroid cancer? Future Oncol 11(12):1719–1727. doi:10.2217/fon.15.68

    CrossRef  Google Scholar 

  • Ma X, Wehland M, Aleshcheva G, Hauslage J, Wasser K, Hemmersbach R, Infanger M, Bauer J, Grimm D (2013) Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 8(7):e68140. doi:10.1371/journal.pone.0068140

    CrossRef  Google Scholar 

  • Ma X, Pietsch J, Wehland M, Schulz H, Saar K, Hubner N, Bauer J, Braun M, Schwarzwalder A, Segerer J, Birlem M, Horn A, Hemmersbach R, Wasser K, Grosse J, Infanger M, Grimm D (2014) Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J 28(2):813–835. doi:10.1096/fj.13-243287

    CrossRef  Google Scholar 

  • Masiello MG, Cucina A, Proietti S, Palombo A, Coluccia P, D’Anselmi F, Dinicola S, Pasqualato A, Morini V, Bizzarri M (2014) Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells. Biomed Res Int 2014:652434. doi:10.1155/2014/652434

    CrossRef  Google Scholar 

  • Matsuoka R, Ohkubo S, Yoshida M, Nakahata N (2007) Alteration of adenylyl cyclase type 6 expression in human astrocytoma cells after exposure to simulated microgravity. J Health Sci 53(5):534–542. doi:10.1248/jhs.53.534

    CrossRef  Google Scholar 

  • Nam J-M, Onodera Y, Bissell MJ, Park CC (2010) Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin α5β1 and fibronectin. Cancer Res 70(13):5238–5248. doi:10.1158/0008-5472.CAN-09-2319

    CrossRef  Google Scholar 

  • Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314(5797):298–300. doi:10.1126/science.1131000

    CrossRef  Google Scholar 

  • Nhieu GT, Izard T (2007) Vinculin binding in its closed conformation by a helix addition mechanism. EMBO J 26(21):4588–4596. doi:10.1038/sj.emboj.7601863

    CrossRef  Google Scholar 

  • Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, Grimm D (2011a) The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med 11(5):350–364

    CrossRef  Google Scholar 

  • Pietsch J, Bauer J, Weber G, Nissum M, Westphal K, Egli M, Grosse J, Schönberger J, Eilles C, Infanger M, Grimm D (2011b) Proteome analysis of thyroid cancer cells after long-term exposure to a random positioning machine. Microgravity Sci Technol 23(4):381–390. doi:10.1007/s12217-011-9258-5

    CrossRef  Google Scholar 

  • Pietsch J, Sickmann A, Weber G, Bauer J, Egli M, Wildgruber R, Infanger M, Grimm D (2011c) A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 11(10):2095–2104. doi:10.1002/pmic.201000817

    CrossRef  Google Scholar 

  • Pietsch J, Ma X, Wehland M, Aleshcheva G, Schwarzwalder A, Segerer J, Birlem M, Horn A, Bauer J, Infanger M, Grimm D (2013a) Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission. Biomaterials 34(31):7694–7705. doi:10.1016/j.biomaterials.2013.06.054

    CrossRef  Google Scholar 

  • Pietsch J, Riwaldt S, Bauer J, Sickmann A, Weber G, Grosse J, Infanger M, Eilles C, Grimm D (2013b) Interaction of proteins identified in human thyroid cells. Int J Mol Sci 14(1):1164–1178. doi:10.3390/ijms14011164

    CrossRef  Google Scholar 

  • Pisanu ME, Noto A, De Vitis C, Masiello MG, Coluccia P, Proietti S, Giovagnoli MR, Ricci A, Giarnieri E, Cucina A, Ciliberto G, Bizzarri M, Mancini R (2014) Lung cancer stem cells lose their stemness default state after exposure to microgravity. Biomed Res Int 2014:470253. doi:10.1155/2014/470253

    CrossRef  Google Scholar 

  • Qian A, Zhang W, Xie L, Weng Y, Yang P, Wang Z, Hu L, Xu H, Tian Z, Shang P (2008) Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut 6(7–10):947–958. doi:10.1016/j.actaastro.2008.01.024

    CrossRef  Google Scholar 

  • Qu L, Chen H, Liu X, Bi L, Xiong J, Mao Z, Li Y (2010) Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem Res 35(9):1445–1454. doi:10.1007/s11064-010-0205-4

    CrossRef  Google Scholar 

  • Redden RA, Doolin EJ (2011) Microgravity assay of neuroblastoma: in vitro aggregation kinetics and organoid morphology correlate with MYCN expression. In Vitro Cell Dev Biol Anim 47(4):312–317. doi:10.1007/s11626-011-9393-8

    CrossRef  Google Scholar 

  • Rijken PJ, de Groot RP, Briegleb W, Kruijer W, Verkleij AJ, Boonstra J, de Laat SW (1991) Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat Space Environ Med 62(1):32–36

    Google Scholar 

  • Rijken PJ, de Groot RP, Kruijer W, de Laat SW, Verkleij AJ, Boonstra J (1992a) Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv Space Res 12(1):145–152

    CrossRef  Google Scholar 

  • Rijken PJ, de Groot RP, Kruijer W, Verkleij AJ, Boonstra J, de Laat SW (1992b) Altered gravity conditions affect early EGF-induced signal transduction in human epidermal A431 cells. ASGSB Bull 5(2):77–82

    Google Scholar 

  • Riwaldt S, Bauer J, Pietsch J, Braun M, Segerer J, Schwarzwalder A, Corydon TJ, Infanger M, Grimm D (2015a) The importance of caveolin-1 as key-regulator of three-dimensional growth in thyroid cancer cells cultured under real and simulated microgravity conditions. Int J Mol Sci 16(12):28296–28310. doi:10.3390/ijms161226108

    CrossRef  Google Scholar 

  • Riwaldt S, Pietsch J, Sickmann A, Bauer J, Braun M, Segerer J, Schwarzwalder A, Aleshcheva G, Corydon TJ, Infanger M, Grimm D (2015b) Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 15(17):2945–2952. doi:10.1002/pmic.201500067

    CrossRef  Google Scholar 

  • Sarkar D, Nagaya T, Koga K, Seo H (1999) Culture in vector-averaged gravity environment in a clinostat results in detachment of osteoblastic ROS 17/2.8 cells. Environ Med 43(1):22–24

    Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49(3–10):399–418

    CrossRef  Google Scholar 

  • Schonberger J, Bauer J, Spruss T, Weber G, Chahoud I, Eilles C, Grimm D (2000) Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J Mol Med (Berl) 78(2):102–110

    CrossRef  Google Scholar 

  • Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51(5):1409–1416

    CrossRef  Google Scholar 

  • Stewart BW, Wild CP (2014) World cancer report 2014

    Google Scholar 

  • Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS, Lim S, Coleman IM, Wu LC, Figg WD, Dahut WL, Nelson P, Lee JK, Amin MB, Lyles R, Johnstone PA, Marshall FF, Chung LW (2008) Coevolution of prostate cancer and bone stroma in three-dimensional co-culture: implications for cancer growth and metastasis. Cancer Res 68(23):9996–10003. doi:10.1158/0008-5472.can-08-2492

    CrossRef  Google Scholar 

  • Svejgaard B, Wehland M, Ma X, Kopp S, Sahana J, Warnke E, Aleshcheva G, Hemmersbach R, Hauslage J, Grosse J, Bauer J, Corydon TJ, Islam T, Infanger M, Grimm D (2015) Common effects on cancer cells exerted by a random positioning machine and a 2d clinostat. PLoS One 10(8):e0135157. doi:10.1371/journal.pone.0135157

    CrossRef  Google Scholar 

  • Takeda M, Magaki T, Okazaki T, Kawahara Y, Manabe T, Yuge L, Kurisu K (2009) Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci Lett 463(1):54–59. doi:10.1016/j.neulet.2009.07.045

    CrossRef  Google Scholar 

  • Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z, Liu Y (2011) A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumor Biol 32(3):469–479. doi:10.1007/s13277-010-0140-7

    CrossRef  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. doi:10.3322/caac.21262

    CrossRef  Google Scholar 

  • Ulbrich C, Pietsch J, Grosse J, Wehland M, Schulz H, Saar K, Hubner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Egli M, Richter P, Einspanier R, Sharbati S, Baltz T, Infanger M, Ma X, Grimm D (2011) Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 28(2):185–198. doi:10.1159/000331730

    CrossRef  Google Scholar 

  • Vamvakidou AP, Mondrinos MJ, Petushi SP, Garcia FU, Lelkes PI, Tozeren A (2007) Heterogeneous breast tumoroids: an in vitro assay for investigating cellular heterogeneity and drug delivery. J Biomol Screen 12(1):13–20. doi:10.1177/1087057106296482

    CrossRef  Google Scholar 

  • van Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39(7):1161–1165. doi:10.1016/j.asr.2007.02.016

    CrossRef  Google Scholar 

  • Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Karniguian A, Gasset G, Irinopoulou T, Calvo F, Rigaut JP, Schoevaert D (2001) The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J 15(6):1104–1106

    Google Scholar 

  • Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Gasset G, Schoevaert D (2003) Weightlessness acts on human breast cancer cell line MCF-7. Adv Space Res 32(8):1595–1603. doi:10.1016/s0273-1177(03)90400-5

    CrossRef  Google Scholar 

  • Vesely DL (2005) Atrial natriuretic peptides: anticancer agents. J Investig Med 53(7):360–365. doi:10.2310/6650.2005.53708

    CrossRef  Google Scholar 

  • Vorselen D, Roos WH, MacKintosh FC, Wuite GJ, van Loon JJ (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28(2):536–547. doi:10.1096/fj.13-236356

    CrossRef  Google Scholar 

  • Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY, Zhau HE, Goodwin TJ, Chung LW (2005) Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 15(5):353–364. doi:10.1016/j.semcancer.2005.05.005

    CrossRef  Google Scholar 

  • Warnke E, Pietsch J, Wehland M, Bauer J, Infanger M, Gorog M, Hemmersbach R, Braun M, Ma X, Sahana J, Grimm D (2014) Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Cell Commun Signal 12:32. doi:10.1186/1478-811x-12-32

    CrossRef  Google Scholar 

  • Warnke E, Kopp S, Wehland M, Hemmersbach R, Bauer J, Pietsch J, Infanger M, Grimm D (2016) Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the random positioning machine. Microgravity Sci Technol 28(3):247–260. doi:10.1007/s12217-015-9456-7

    CrossRef  Google Scholar 

  • Zeng J, Xie K, Wu H, Zhang B, Huang C (2012) Identification and functional study of cytokines and chemokines involved in tumorigenesis. Comb Chem High Throughput Screen 15(3):276–285

    CrossRef  Google Scholar 

  • Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J (2016) Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. J Cell Biochem 117(9):2138–2148. doi:10.1002/jcb.25520

    CrossRef  Google Scholar 

  • Zhau HE, Goodwin TJ, Chang SM, Baker TL, Chung LW (1997) Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim 33(5):375–380. doi:10.1007/s11626-997-0008-3

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Krüger, M., Bauer, J., Grimm, D. (2017). Cancer Research in Space. In: Biotechnology in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9_7

Download citation