Skip to main content

Protein Crystallization on the International Space Station ISS

Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

Already early protein crystallization experiments in space indicated that more extended crystallization periods, beyond the flight durations of shuttle missions or unmanned orbiters, will be beneficial for the majority of microgravity protein crystal growth experiments. Beside preceding intensive efforts to adjust and optimize crystallization conditions to meet the microgravity time span of orbiters flight duration, video imaging of some experiments showed that the crystallization process was not finalized at the end of the mission. And a number of experiments performed on MIR, prior to availability of ISS, confirmed potential advantages applying extended microgravity crystallization periods, also knowing that due to some crew activities the microgravity on ISS may not sustain a 100% convection free environment in the crystallization hardware. Considering this fact as a minor restraint and knowing that most biomolecules require and appreciate growth periods longer than the duration of a typical shuttle mission of 7–10 days, opportunities to perform crystallization experiments on ISS are very attractive.

Keywords

  • Crystal Quality
  • Crystallization Methods and Techniques
  • Microgravity Experiments

This is a preview of subscription content, access via your institution.

Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4

References

  • Akparov VK, Timofeev VI, Kuranova IP (2015) Crystallization and preliminary X-ray diffraction study of porcine carboxypeptidase B. Crystallogr Rep 60(3):367–369. doi:10.1134/s1063774515030025

    CrossRef  Google Scholar 

  • Barnes CL, Snell EH, Kundrot CE (2002) Thaumatin crystallization aboard the International Space Station using liquid–liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN). Acta Crystallogr D Biol Crystallogr 58(5):751–760

    CrossRef  Google Scholar 

  • Berisio R, Vitagliano L, Vergara A, Sorrentino G, Mazzarella L, Zagari A (2002) Crystallization of the collagen-like polypeptide (PPG) 10 aboard the International Space Station. 2. Comparison of crystal quality by X-ray diffraction. Acta Crystallogr D Biol Crystallogr 58(10):1695–1699

    CrossRef  Google Scholar 

  • Bosch R, Lautenschlager P, Potthast L, Stapelmann J (1992) Experiment equipment for protein crystallization in μg facilities. J Cryst Growth 122(1–4):310–316

    CrossRef  Google Scholar 

  • Carotenuto L, Berisio R, Piccolo C, Vitagliano L, Zagari A (2001) Video observation of protein crystal growth in the advanced protein crystallization facility aboard the space shuttle mission STS-95. J Cryst Growth 232(1–4):481–488. doi:10.1016/S0022-0248(01)01084-3

    CrossRef  Google Scholar 

  • DeLucas LJ, Crysel WB, Weise LD, Smith CD, McDonald WT (1999) The international space station X-ray crystallography facility. Adv X-ray Anal 43:1999

    Google Scholar 

  • DeLucas LJ, Long MM, Moore KM, Harrington M, McDonald WT, Smith CD, Lewis TB, Crysel WB, Weise LD (2000) Protein crystal growth studies at the center for macromolecular crystallography. Space Technology and Application Forum, pp 488–490

    Google Scholar 

  • Edward HS, John RH (2005) Macromolecular crystallization in microgravity. Rep Prog Phys 68(4):799

    CrossRef  Google Scholar 

  • Evrard C, Maes D, Zegers I, Declercq J-P, Vanhee C, Martial J, Wyns L, Weerdt CVD (2007) TIM crystals grown by capillary counterdiffusion: statistical evidence of quality improvement in microgravity. Cryst Growth Des 7(11):2161–2166. doi:10.1021/cg700687t

    CrossRef  Google Scholar 

  • Gonzalez-Ramirez LA, Carrera J, Gavira JA, Melero-Garcia E, Garcia-Ruiz JM (2008) Granada crystallization facility-2: a versatile platform for crystallization in space. Cryst Growth Des 8(12):4324–4329

    CrossRef  Google Scholar 

  • Habash J, Boggon TJ, Raftery J, Chayen NE, Zagalsky PF, Helliwell JR (2003) Apocrustacyanin C(1) crystals grown in space and on Earth using vapour-diffusion geometry: protein structure refinements and electron-density map comparisons. Acta Crystallogr D Biol Crystallogr 59(Pt 7):1117–1123

    CrossRef  Google Scholar 

  • Inaka K, Takahashi S, Aritake K, Tsurumura T, Furubayashi N, Yan B, Hirota E, Sano S, Sato M, Kobayashi T, Yoshimura Y, Tanaka H, Urade Y (2011) High-quality protein crystal growth of mouse lipocalin-type prostaglandin D synthase in microgravity. Cryst Growth Des 11(6):2107–2111. doi:10.1021/cg101370v

    CrossRef  Google Scholar 

  • Kinoshita T, Maruki R, Warizaya M, Nakajima H, Nishimura S (2005) Structure of a high-resolution crystal form of human triosephosphate isomerase: improvement of crystals using the gel-tube method. Acta Crystallogr Sect F: Struct Biol Cryst Commun 61(4):346–349

    CrossRef  Google Scholar 

  • Krauspenhaar R, Rypniewski W, Kalkura N, Moore K, DeLucas L, Stoeva S, Mikhailov A, Voelter W, Betzel C (2002) Crystallisation under microgravity of mistletoe lectin I from Viscum album with adenine monophosphate and the crystal structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr 58(pt 10 pt 1):1704–1707

    CrossRef  Google Scholar 

  • Kuranova I, Smirnova E, Abramchik YA, Chupova L, Esipov R, Akparov VK, Timofeev V, Kovalchuk M (2011) Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method. Crystallogr Rep 56(5):884

    CrossRef  Google Scholar 

  • Małecki PH, Rypniewski W, Szymański M, Barciszewski J, Meyer A (2012) Binding of the plant hormone kinetin in the active site of Mistletoe Lectin I from Viscum album. Biochim Biophys Acta 1824(2):334–338

    CrossRef  Google Scholar 

  • McPherson A (2004) Introduction to protein crystallization. Methods 34(3):254–265

    CrossRef  Google Scholar 

  • McPherson A, Malkin AJ, Kuznetsov YG, Koszelak S, Wells M, Jenkins G, Howard J, Lawson G (1999) The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals. J Cryst Growth 196(2):572–586

    CrossRef  Google Scholar 

  • Meyer A, Rypniewski W, Szymański M, Voelter W, Barciszewski J, Betzel C (2008) Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin. Biochim Biophys Acta 1784(11):1590–1595

    Google Scholar 

  • Miele AE, Federici L, Sciara G, Draghi F, Brunori M, Vallone B (2003) Analysis of the effect of microgravity on protein crystal quality: the case of a myoglobin triple mutant. Acta Crystallogr D Biol Crystallogr 59(pt 6):982–988

    CrossRef  Google Scholar 

  • Mohamad Aris SNA, Thean Chor AL, Mohamad Ali MS, Basri M, Salleh AB, Raja Abd Rahman RNZ (2014) Crystallographic analysis of ground and space thermostable T1 lipase crystal obtained via counter diffusion method approach. Biomed Res Int 2014:8. doi:10.1155/2014/904381

    CrossRef  Google Scholar 

  • Nichesola D, Perduca M, Capaldi S, Carrizo ME, Righetti PG, Monaco HL (2004) Crystal structure of chicken liver basic fatty acid-binding protein complexed with cholic acid. Biochemistry 43(44):14072–14079

    CrossRef  Google Scholar 

  • Pletser V, Stapelmann J, Potthast L, Bosch R (1999) The Protein Crystallization Diagnostics Facility, a new European instrument to investigate biological macromolecular crystal growth on board the International Space Station. J Cryst Growth 196(2):638–648

    CrossRef  Google Scholar 

  • Pletser V, Bosch R, Potthast L, Kassel R (2006) The Solution Crystallisation Diagnostics Facility, a European Facility for Microgravity Research on Structures from Solutions on Board the ISS. Fluid Dyn Mater Process 2(1):65–76

    Google Scholar 

  • Pletser V, Bosch R, Potthast L, Lautenschlager P, Kassel R (2009) The Protein Crystallisation Diagnostics Facility (PCDF) on Board ESA Columbus Laboratory. Microgravity Sci Technol 21(3):269–277

    CrossRef  Google Scholar 

  • Ponassi M, Felli L, Parodi S, Valbusa U, Rosano C (2011) Crystals of the hydrogenase maturation factor HypF N-terminal domain grown in microgravity, display improved internal order. J Crys Growth 314(1):246–251. doi:10.1016/j.jcrysgro.2010.12.011

    CrossRef  Google Scholar 

  • Safonova TN, Mordkovich NN, Polyakov KM, Manuvera VA, Veiko VP, Popov VO (2012) Crystallization of uridine phosphorylase from Shewanella oneidensis MR-1 in the laboratory and under microgravity and preliminary X-ray diffraction analysis. Acta Crystallogr Sect F: Struct Biol Cryst Commun 68(pt 11):1387–1389. doi:10.1107/S1744309112041784

  • Sato M, Tanaka H, Inaka K, Shinozaki S, Yamanaka A, Takahashi S, Yamanaka M, Hirota E, Sugiyama S, Kato M (2006) JAXA-GCF project-high-quality protein crystals grown under microgravity environment for better understanding of protein structure. Microgravity Sci Technol 18(3):184–189

    CrossRef  Google Scholar 

  • Shabalin IG, Serov AE, Skirgello OE, Timofeev VI, Samygina VR, Popov VO, Tishkov VI, Kuranova IP (2010) Recombinant formate dehydrogenase from Arabidopsis thaliana: Preparation, crystal growth in microgravity, and preliminary X-ray diffraction study. Crystallogr Rep 55(5):806–810. doi:10.1134/s1063774510050159

  • Simic-Stefani S, Kawaji M, Hu HH (2006) G-jitter-induced motion of a protein crystal under microgravity. J Cryst Growth 294(2):373–384

    CrossRef  Google Scholar 

  • Smirnova EA, Kislitsyn YA, Sosfenov NI, Lyashenko AV, Popov AN, Baĭdus AN, Timofeev VI, Kuranova IP (2009) Protein crystal growth on the Russian segment of the International Space Station. Crystallogr Rep 54(5):901–911. doi:10.1134/s106377450905023x

    CrossRef  Google Scholar 

  • Stapelmann J, Smolik G, Lautenschlager P, Lork W, Pletser V (2001) Towards protein crystal growth on the International Space Station (ISS)—Innovative tools, diagnostics and applications. J Cryst Growth 232(1):468–472

    CrossRef  Google Scholar 

  • Strelov VI, Kuranova IP, Zakharov BG, Voloshin AE (2014) Crystallization in space: results and prospects. Crystallogr Rep 59(6):781–806. doi:10.1134/s1063774514060285

    CrossRef  Google Scholar 

  • Takahashi S, Ohta K, Furubayashi N, Yan B, Koga M, Wada Y, Yamada M, Inaka K, Tanaka H, Miyoshi H (2013) JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals. J Synchrotron Radiat 20(6):968–973

    CrossRef  Google Scholar 

  • Tanaka H, Takahashi S, Yamanaka M, Yoshizaki I, Sato M, Sano S, Motohara M, Kobayashi T, Yoshitomi S, Tanaka T (2006) Diffusion coefficient of the protein in various crystallization solutions: the key to growing high-quality crystals in space. Microgravity Sci Technol 18(3):91–94

    CrossRef  Google Scholar 

  • Tanaka H, Umehara T, Inaka K, Takahashi S, Shibata R, Bessho Y, Sato M, Sugiyama S, Fusatomi E, Terada T, Shirouzu M, Sano S, Motohara M, Kobayashi T, Tanaka T, Tanaka A, Yokoyama S (2007) Crystallization of the archaeal transcription termination factor NusA: a significant decrease in twinning under microgravity conditions. Acta Crystallogr Sect F: Struct Biol Cryst Commun 63(pt 2):69–73. doi:10.1107/S1744309106054625

    CrossRef  Google Scholar 

  • Tanaka H, Tsurumura T, Aritake K, Furubayashi N, Takahashi S, Yamanaka M, Hirota E, Sano S, Sato M, Kobayashi T, Tanaka T, Inaka K, Urade Y (2011) Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment. J Synchrotron Radiat 18(1):88–91. doi:10.1107/s0909049510037076

    CrossRef  Google Scholar 

  • Timofeev VI, Smirnova EA, Chupova LA, Esipov RS, Kuranova IP (2010) Preparation of the crystal complex of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis with coenzyme A and investigation of its three-dimensional structure at 2.1-Å resolution. Crystallogr Rep 55(6):1050–1059. doi:10.1134/s1063774510060234

  • Timofeev V, Smirnova E, Chupova L, Esipov R, Kuranova I (2012a) X-ray study of the conformational changes in the molecule of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis during the catalyzed reaction. Acta Crystallogr D Biol Crystallogr 68(pt 12):1660–1670. doi:10.1107/s0907444912040206

  • Timofeev VI, Smirnova EA, Chupova LA, Esipov RS, Kuranova IP (2012b) Three-dimensional structure of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in the apo form and in complexes with coenzyme A and dephosphocoenzyme A. Crystallogr Rep 57(1):96–104. doi:10.1134/s1063774512010142

  • Timofeev VI, Abramchik YA, Fateev IV, Zhukhlistova NE, Murav’eva TI, Kuranova IP, Esipov RS (2013a) Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3′-azido-2′-fluoro-2′,3′-dideoxyuridine. Crystallogr Rep 58(6):842–853. doi:10.1134/s1063774513060230

  • Timofeev VI, Kuznetsov SA, Akparov VK, Chestukhina GG, Kuranova IP (2013b) Three-dimensional structure of carboxypeptidase T from Thermoactinomyces vulgaris in complex with N-BOC-L-leucine. Biochem Mosc 78(3):252–259. doi:10.1134/s0006297913030061

  • Timofeev VI, Abramchik YA, Zhukhlistova NE, Muravieva TI, Esipov RS, Kuranova IP (2016) Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution. Crystallogr Rep 61(1):44–54. doi:10.1134/s1063774516010247

  • Vahedi-Faridi A, Porta J, Borgstahl GE (2003) Improved three-dimensional growth of manganese superoxide dismutase crystals on the International Space Station. Acta Crystallogr D Biol Crystallogr 59(pt 2):385–388

    CrossRef  Google Scholar 

  • Vallazza M, Banumathi S, Perbandt M, Moore K, DeLucas L, Betzel C, Erdmann VA (2002) Crystallization and structure analysis of Thermus flavus 5S rRNA helix B. Acta Crystallogr D Biol Crystallogr 58:1700–1703

    Google Scholar 

  • Vergara A, Corvino E, Sorrentino G, Piccolo C, Tortora A, Carotenuto L, Mazzarella L, Zagari A (2002) Crystallization of the collagen-like polypeptide (PPG) 10 aboard the International Space Station. 1. Video observation. Acta Crystallogr D Biol Crystallogr 58(10):1690–1694

    CrossRef  Google Scholar 

  • Yoshida H, Yoshihara A, Ishii T, Izumori K, Kamitori S (2016) X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates. Appl Microbiol Biotechnol 100(24):10403–10415. doi:10.1007/s00253-016-7673-7

    CrossRef  Google Scholar 

  • Yoshikawa S, Kukimoto-Niino M, Parker L, Handa N, Terada T, Fujimoto T, Terazawa Y, Wakiyama M, Sato M, Sano S (2013) Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 32(1):27–38

    CrossRef  Google Scholar 

  • Yoshizaki I, Nakamura H, Fukuyama S, Yoda S, Komatsu H (2004) Scientific approach on the optimization of protein crystallization condition for microgravity experiments. Ann N Y Acad Sci 1027:28–47

    CrossRef  Google Scholar 

  • Yoshizaki I, Tsukamoto K, Yamazaki T, Murayama K, Oshi K, Fukuyama S, Shimaoka T, Suzuki Y, Tachibana M (2013) Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Rev Sci Instrum 84:1037072–1037078

    CrossRef  Google Scholar 

  • Zegers I, Carotenuto L, Evrard C, Garcia-Ruiz J, De Gieter P, Gonzales-Ramires L, Istasse E, Legros J-C, Martial J, Minetti C (2006) Counterdiffusion protein crystallisation in microgravity and its observation with PromISS (Protein Microscope for the International Space Station). Microgravity Sci Technol 18(3):165–169

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Betzel B.D.S., F.R.A.C.D.S., M.S. .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Betzel, C., Martirosyan, A., Ruyters, G. (2017). Protein Crystallization on the International Space Station ISS. In: Biotechnology in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9_3

Download citation