Skip to main content

Protein Crystallization in Space: Early Successes and Drawbacks in the German Space Life Sciences Program

Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

The utilization of microgravity for improving protein crystallization and thereby structure determination started in the early 1980s onboard of TEXUS sounding rockets and of the US Space Shuttle. After the successful pioneering work by Prof. Littke, especially the German space life sciences program put much effort into this topic. In spite of some technical and methodological drawbacks, early successes could be obtained as well. In some cases, microgravity experiments enabled crystallization of certain molecules for the first time; in other examples, improved crystals led to a better structure determination with important application potential for structure-function-analysis or even for drug design. Especially after the development of the APCF (Advanced Protein Crystallization Facility) by German industry on contract by ESA and its utilization in Spacelab missions and on the International Space Station ISS, the potential of microgravity for the improvement of crystallization and structure elucidation became clearly visible.

Keywords

  • Protein Crystallization
  • Microgravity Conditions
  • Space Hardware
  • Structure Elucidation
  • Archaea Surface
  • Proteins
  • Misletoe Lectin
  • RNA Molecules

This is a preview of subscription content, access via your institution.

Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  • Bosch R, Lautenschlager P, Potthast L, Stapelmann J (1992) Experiment equipment for protein crystallization in μg facilities. J Cryst Growth 122(1–4):310–316

    CrossRef  Google Scholar 

  • Carter DC, Wright B, Miller T, Chapman J, Twigg P, Keeling K, Moody K, White M, Click J, Ruble JR, Ho JX, Adcock-Downey L, Dowling T, Chang C-H, Ala P, Rose J, Wang BC, Declercq J-P, Evrard C, Rosenberg J, Wery J-P, Clawson D, Wardell M, Stallings W, Stevens A (1999) PCAM: a multi-user facility-based protein crystallization apparatus for microgravity. J Cryst Growth 196(2–4):610–622. doi:10.1016/S0022-0248(98)00858-6

    CrossRef  Google Scholar 

  • Chayen NE (2003) Protein crystallization for genomics: throughput versus output. J Struct Funct Genom 4(2–3):115–120

    CrossRef  Google Scholar 

  • Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147–153

    CrossRef  Google Scholar 

  • Claus H, Akca E, Debaerdemaeker T, Evrard C, Declercq JP, König H (2002) Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol 25(1):3–12. doi:10.1078/0723-2020-00100

    CrossRef  Google Scholar 

  • Day J, McPherson A (1992) Macromolecular crystal growth experiments on international microgravity laboratory – 1. Protein Sci 1(10):1254–1268. doi:10.1002/pro.5560011004

    CrossRef  Google Scholar 

  • Debye P, Hückel E (1923) The theory of electrolytes: I. lowering of freezing point and related phenomena. Phys Z 24:185–206

    Google Scholar 

  • DeLucas LJ, Suddath FL, Snyder R, Naumann R, Broom MB, Pusey M, Yost V, Herren B, Carter D, Nelson B, Meehan EJ, McPherson A, Bugg CE (1986) Preliminary investigations of protein crystal growth using the space shuttle. J Cryst Growth 76(3):681–693. doi:10.1016/0022-0248(86)90185-5

    CrossRef  Google Scholar 

  • Drebes J, Künz M, Windshügel B, Kikhney AG, Müller IB, Eberle RJ, Oberthür D, Cang H, Svergun DI, Perbandt M, Betzel C, Wrenger C (2016) Structure of ThiM from Vitamin B1 biosynthetic pathway of Staphylococcus aureus – insights into a novel pro-drug approach addressing MRSA infections. Sci Rep 6:22871. doi:10.1038/srep22871

    CrossRef  Google Scholar 

  • Erdmann VA, Lippmann C, Betzel C, Dauter Z, Wilson K, Hilgenfeld R, Hoven J, Liesum A, Saenger W, Müller-Fahrnow A (1989) Crystallization of proteins under microgravity. FEBS Lett 259(1):194–198

    CrossRef  Google Scholar 

  • Evrard C, Declercq J-P, Debaerdemaeker T, König H (1999) The first successful crystallization of a prokaryotic extremely thermophilic outer surface layer glycoprotein. Z Krist 214(8):427–429

    Google Scholar 

  • Förster C, Eichert A, Perbandt M, Betzel C, Erdmann VA (2011) Der Einfluss von Wasser und Magnesium auf die Struktur von Ribonukleinsäuren. Lab&More 1(11):8–12

    Google Scholar 

  • Gavira JA (2016) Current trends in protein crystallization. Arch Biochem Biophys 602:3–11

    CrossRef  Google Scholar 

  • Giegé R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280(24):6456–6497

    CrossRef  Google Scholar 

  • Gonzalez-Ramirez LA, Carrera J, Gavira JA, Melero-Garcia E, Garcia-Ruiz JM (2008) Granada crystallization facility-2: a versatile platform for crystallization in space. Cryst Growth Des 8(12):4324–4329

    CrossRef  Google Scholar 

  • Hampp N (2000) Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material. Appl Microbiol Biotechnol 53(6):633–639

    CrossRef  Google Scholar 

  • Joannes L, Dupont O, Dewandel J-L, Ligot R, Algrain H (2004) Optical system for the Protein Crystallisation Diagnostics Facility (PCDF) on board the ISS. In: Fifth international conference on space optics, 2004, pp 457–461

    Google Scholar 

  • Klukas O, Schubert W-D, Jordan P, Krauß N, Fromme P, Witt HT, Saenger W (1999a) Localization of two phylloquinones, QK and QK′, in an improved electron density map of photosystem I at 4-Å resolution. J Biol Chem 274(11):7361–7367

    CrossRef  Google Scholar 

  • Klukas O, Schubert W-D, Jordan P, Krauß N, Fromme P, Witt HT, Saenger W (1999b) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274(11):7351–7360

    CrossRef  Google Scholar 

  • Krauspenhaar R, Rypniewski W, Kalkura N, Moore K, DeLucas L, Stoeva S, Mikhailov A, Voelter W, Betzel C (2002) Crystallisation under microgravity of mistletoe lectin I from Viscum album with adenine monophosphate and the crystal structure at 1.9 Å resolution. Acta Crystallogr D Biol Crystallogr 58(10):1704–1707

    CrossRef  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT, Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Mol Biol 3(11):965–973

    CrossRef  Google Scholar 

  • Kundrot CE, Judge RA, Pusey ML, Snell EH (2001) Microgravity and macromolecular crystallography. Cryst Growth Des 1(1):87–99

    CrossRef  Google Scholar 

  • Lattman EE, Loll PJ (2008) Protein crystallography: a concise guide. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Littke W, John C (1984) Materials. Protein single crystal growth under microgravity. Science 225(4658):203–204. doi:10.1126/science.225.4658.203

    CrossRef  Google Scholar 

  • Littke W, John C (1986) Protein single crystal growth under microgravity. J Cryst Growth 76(3):663–672

    CrossRef  Google Scholar 

  • Martin-Garcia JM, Conrad CE, Coe J, Roy-Chowdhury S, Fromme P (2016) Serial femtosecond crystallography: a revolution in structural biology. Arch Biochem Biophys 602:32–47

    CrossRef  Google Scholar 

  • McPherson A (2004) Introduction to protein crystallization. Methods 34(3):254–265

    CrossRef  Google Scholar 

  • McPherson A (2011) Introduction to macromolecular crystallography. Wiley, New York

    Google Scholar 

  • McPherson A, DeLucas LJ (2015) Microgravity protein crystallization. npj Microgravity 1:15010

    CrossRef  Google Scholar 

  • Meyer A, Rypniewski W, Szymański M, Voelter W, Barciszewski J, Betzel C (2008) Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin. Biochim Biophys Acta 1784(11):1590–1595

    CrossRef  Google Scholar 

  • Mikeska R, Wacker R, Arni R, Singh TP, Mikhailov A, Gabdoulkhakov A, Voelter W, Betzel C (2005) Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties. Acta Crystallogr Sect F: Struct Biol Cryst Commun 61(1):17–25

    CrossRef  Google Scholar 

  • Oesterhelt D, Bräuchle C, Hampp N (1991) Bacteriorhodopsin: a biological material for information processing. Q Rev Biophys 24(04):425–478

    CrossRef  Google Scholar 

  • Pletser V, Bosch R, Potthast L, Kassel R (2006) The Solution Crystallisation Diagnostics Facility, a European Facility for Microgravity Research on Structures from Solutions on Board the ISS. Fluid Dyn Mater Process 2(1):65–76

    Google Scholar 

  • Pletser V, Mazzonii S, Boscnz R, Potthast L (2008) The Solution Crystallisation Diagnostics Facility (SCDF) for Microgravity Investigations on Solution Growth Crystals on Board the International Space Station. J Jpn Soc Microgravity Appl 25(3):573–578

    Google Scholar 

  • Pletser V, Bosch R, Potthast L, Lautenschlager P, Kassel R (2009) The Protein Crystallisation Diagnostics Facility (PCDF) on Board ESA Columbus Laboratory. Microgravity Sci Technol 21(3):269–277

    CrossRef  Google Scholar 

  • Rahman A, Raja N, Ali M, Sugiyama S, Leow AT, Inoue T, Basri M, Salleh AB, Matsumura H (2015) A comparative analysis of microgravity and Earth grown thermostable T1 lipase crystals using HDPCG apparatus. Protein Pept Lett 22(2):173–179

    CrossRef  Google Scholar 

  • Schlagheck R, Trach B (2003) Microgravity research results and experiences from the NASA/MIR space station program. Acta Astronaut 53(12):983–996

    CrossRef  Google Scholar 

  • Schubert R, Meyer A, Baitan D, Dierks K, Perbandt M, Betzel C (2017) Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization. Cryst Growth Des 17:954–958

    CrossRef  Google Scholar 

  • Smirnova EA, Kislitsyn YA, Sosfenov NI, Lyashenko AV, Popov AN, Baĭduś AN, Timofeev VI, Kuranova IP (2009) Protein crystal growth on the Russian segment of the International Space Station. Crystallogr Rep 54(5):901–911. doi:10.1134/s106377450905023x

    CrossRef  Google Scholar 

  • Su X-D, Zhang H, Terwilliger TC, Liljas A, Xiao J, Dong Y (2015) Protein crystallography from the perspective of technology developments. Crystallogr Rev 21(1–2):122–153

    CrossRef  Google Scholar 

  • Vallaza M, Banumathi S, Perbandt M, Moore K, DeLucas L, Betzel C, Erdmann VA (2002) Crystallization and structure analysis of Thermus flavus 5S rRNA helix B. Acta Cryst D58:1700–17003

    Google Scholar 

  • Vallaza M, Perbandt M, Klussmann S, Rypniewski W, Einspahr HM, Erdmann VA, Betzel C (2004) First look at RNA in L-configurtion. Acta Crystallogr Sect D60:1–7

    Google Scholar 

  • van Noorden R (2009) Structural biology bags chemistry prize, Chemistry Nobel for trio who described the ribosome. Nature 461:860. doi:10.1038/461860a

    CrossRef  Google Scholar 

  • Vekilov PG (2004) Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst Growth Des 4(4):671–685

    CrossRef  Google Scholar 

  • Yoshizaki I, Tsukamoto K, Yamazaki T, Murayama K, Oshi K, Fukuyama S, Shimaoka T, Suzuki Y, Tachibana M (2013) Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Rev Sci Instrum 84(10):103707

    CrossRef  Google Scholar 

  • Zegers I, Carotenuto L, Evrard C, Garcia-Ruiz J, De Gieter P, Gonzales-Ramires L, Istasse E, Legros J-C, Martial J, Minetti C (2006) Counterdiffusion protein crystallisation in microgravity and its observation with PromISS (Protein Microscope for the International Space Station). Microgravity Sci Technol 18(3):165–169

    CrossRef  Google Scholar 

  • Zörb C, Weisert A, Stapelmann J, Smolik G, Carter D, Wright B, Brunner-Joos K, Wagner G (2002) Bacteriorhodopsin crystal growth in reduced gravity-Results under the conditions, given in CPCF on board of a space shuttle, versus the conditions, given in DCAM on board of the Space Station Mir. Microgravity Sci Technol 13(3):22–29

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Ruyters B.D.S., F.R.A.C.D.S., M.S. .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ruyters, G., Betzel, C. (2017). Protein Crystallization in Space: Early Successes and Drawbacks in the German Space Life Sciences Program. In: Biotechnology in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-64054-9_2

Download citation