Skip to main content

Interpretation of Acid-Base Disorders

  • Chapter
  • First Online:
  • 1711 Accesses

Abstract

The definition of an acid or a base varies largely according to the context. From a physiological point of view, an acid or an alkaline solution is characterized by its capacity to release or conversely to consume them. This chapter will review most of the pathophysiological concepts of acid-base equilibrium and the mechanisms which are involved in its regulation. The history of the patient, the context, and clinical signs are essential to diagnose an acid-base disorder. However, the final interpretation of an acid-base disorder is based on biological data issued from blood samples tools which allow to move on step by step.

This is a preview of subscription content, log in via an institution.

References

  1. Hasan A (2009) Handbook of blood gas/acid-base interpretation. Springer Verlag, London, 361 p

    Book  Google Scholar 

  2. Kellum J, Elbers PWG (2009) Stewart’s textbook of acid-base. Lulu Enterprises, Amsterdam, Netherlands, 501 p

    Google Scholar 

  3. Story DA (2004) Bench -to-bedside review: a brief history of clinical acid-base. Crit Care 8:253–258

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siggaard-Andersen O (1977) The Van Slyke equation. Scand J Clin Lab Invest 37(suppl):15–20

    Article  CAS  Google Scholar 

  5. Stewart PA (1978) Independent and dependent variables of acid-base control. Resp Physiol 33:9–26

    Article  CAS  Google Scholar 

  6. Narins RG, Kupin W, Faber MD, Goodkin DA, Dunfee DP (1995) Pathophysiology, classification, and therapy of acid-base disturbances. In: Arieff AI, DeFronzo RA (eds) Fluid, electrolyte and acid-base disorders. Churchill Livingstone, New York, pp 105–198

    Google Scholar 

  7. Spital A, Garella S (1998) Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Ronco C, Bellomo R (eds) Critical care nephrology. Kluwer Academic Publisher, Dordrecht, pp 327–344

    Chapter  Google Scholar 

  8. Madger S (1998) Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Ronco C, Bellomo R (eds) Critical care nephrology. Kluwer Academic Publisher, Dordrecht, pp 279–296

    Google Scholar 

  9. Gomez H, Kellum JA (2015) Understanding acid-base disorders. Crit Care Clin 31:849–860

    Article  PubMed  Google Scholar 

  10. Ayers P, Dixon C, Mays A (2015) Acid-base disorders: learning the basics. Nutr Clin Pract 30:14–20

    Article  PubMed  Google Scholar 

  11. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as a measure of non-respiratory acid-base disturbance. Acta Anaesthesiol Scand 39(suppl 107):123–128

    Article  Google Scholar 

  12. Schilchtig R (1997) [Base excess] vs [strong ion difference]: which is more helpful? Adv Exp Med Biol 411:91–95

    Article  Google Scholar 

  13. Kofstad J (2001) Base excess: a historical review- has the calculation of base excess been more standardised the last 20 years? Clin Chim Acta 307:193–195

    Article  CAS  PubMed  Google Scholar 

  14. Story DA, Morimatsu H, Bellomo R (2004) Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders. Br J Anaesth 92:54–60

    Article  CAS  PubMed  Google Scholar 

  15. Gunnerson KJ, Kellum JA (2003) Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 9:468–473

    Article  PubMed  Google Scholar 

  16. Kaplan LJ, Frangos S (2005) Clinical review: acid-base abnormalities in the intensive care unit. Crit Care 9:198–203

    Article  PubMed  Google Scholar 

  17. Quintard H, Hubert S, Ichai C (2007) Qu'apporte le modèle de Stewart à l'interprétation des troubles de l'équilibre acide base? Ann Fr Anesth Réanim 26:423–433

    Article  CAS  PubMed  Google Scholar 

  18. Ring T, Kellum JA (2016) Strong relationships in acid-base chemistry - Modeling protons based on predictable concentrations of strong ions, total weak acid concentrations, and PCO2. PLoS One 11:e0162872

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kellum JA (2000) Determinants of blood pH in health and disease. Crit Care 4:6–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Story DA, Poustie S, Bellomo R (2001) Quantitative physical chemistry analysis of acid-base disorders in critically ill patients. Anaesthesia 56:530–535

    Article  CAS  PubMed  Google Scholar 

  21. Gunnerson K (2005) Clinical review: the meaning of acid-base abnormalities in the intensive care unit. Part I - Epidemiology. Crit Care 9:508–515

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leblanc M, Kellum JA (1998) Biochemical and biophysical principles of hydrogen ion regulation. In: Ronco C, Bellomo R (eds) Critical care nephrology. Kluwer Academic Publisher, Dordrecht, pp 261–277

    Chapter  Google Scholar 

  23. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41–R46

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soriano JR (2002) Renal tubular acidosis; the clinical entity. J Am Soc Nephrol 13:2160–2168

    Article  Google Scholar 

  25. Cohen RD (1995) The liver and acid-base regulation. In: Arieff AI, DeFronzo F (eds) Fluid, electrolyte and acid-base disorders, 2nd edn. Churchill Livingstone, New York, pp 777–790

    Google Scholar 

  26. Haussinger D, Gerok W (1985) Hepatic urea synthesis and pH regulation: role of CO2, HCO3, pH and the activity of carbonic anhydrase. Eur J Biochem 152:381–386

    Article  CAS  PubMed  Google Scholar 

  27. Adrogue H, Madias NE (1998) Medical progress: management of life-threatening acid-base disorders: first of two parts. N Engl J Med 338:26–34

    Article  CAS  PubMed  Google Scholar 

  28. Gluck SL (1998) Acid-base. Lancet 352:474–479

    Article  CAS  PubMed  Google Scholar 

  29. Kraut JA, Madias NE (2001) Approach to patients with acid-base disorders. Respir Care 46:392–403

    CAS  PubMed  Google Scholar 

  30. Narins RG (1994) Acid-base disorders: definitions and introductory concepts. In: Maxwell MH, Kleeman CR, Narins RG (eds) Clinical disorders of fluid and electrolyte metabolism, 5th edn. Mac Graw Hill, New York, pp 755–767

    Google Scholar 

  31. Funk GC, Doberer D, Heinze G, Madi C, Holzinger U, Schneeweiss B (2004) Changes of serum chloride and metabolic acid-base state in critically illness. Anaesthesia 59:1111–1115

    Article  PubMed  Google Scholar 

  32. Durward A, Skellett S, Mayer A, Taylor D, Tibby SM, Murdoch IA (2001) The value of chloride:sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med 27:223–254

    Article  Google Scholar 

  33. Wiseman AC, Linas S (2005) Disorders of potassium and acid-base balance. Am J Kidney Dis 45:941–949

    Article  PubMed  Google Scholar 

  34. Magner PO, Robinson L, Halperin RM, Zettle R, Halperin ML (1988) The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am J Kidney Dis 11:220–224

    Article  CAS  PubMed  Google Scholar 

  35. Figge J, Rossing TH, Fencl V (1991) The role of serum proteins in acid-base equilibria. J Lab Clin Med 117:453–467

    CAS  PubMed  Google Scholar 

  36. Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1810

    Article  CAS  PubMed  Google Scholar 

  37. Fumeaux Z, Stoermann-Chopard C (2005) Le spot urinaire: utilité et pièges à éviter. Rev Med Suisse 1:557–561

    CAS  PubMed  Google Scholar 

  38. Reilly RF, Anderson RJ (1998) Interpreting the anion gap. Crit Care Med 26:1771–1772

    Article  CAS  PubMed  Google Scholar 

  39. Moe OW, Fuster D (2003) Clinical acid-base pathophysiology: disorders of plasma anion gap. Best Pract Res Clin Endocrinol Metab 17:559–574

    Article  CAS  PubMed  Google Scholar 

  40. Story DA, Poustie S, Bellomo R (2002) Estimating unmeasured anions in critically ill patients: anion gap, base deficit, and strong ion gap. Anesthesia 57:1109–1114

    Article  CAS  Google Scholar 

  41. Emmett M (2006) Anion-gap interpretation: the old and the new. Nat Clin Pract 2:4–8

    Article  Google Scholar 

  42. Dinh CH, Grandinetti A, Joffe A et al (2006) Correcting the anion gap for hypoalbuminemia does not improve detection of hyperlactatemia. Emerg Med J 23:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilkes P (1998) Hypoproteinemia, strong ion difference and acid-base status in critically ill patients. J Appl Physiol 84:1740–1748

    Article  CAS  PubMed  Google Scholar 

  44. Kellum JA (2007) Disorders of acid-base balance. Crit Care Med 35:2630–2636

    Article  PubMed  Google Scholar 

  45. Story DA, Morimatsu H, Bellomo R (2006) Hyperchloremic acidosis in the critically ill: one of the strong-ion acidoses? Anesth Analg 103:144–148

    Article  PubMed  Google Scholar 

  46. Berend K, de Vries APJ, Gans ROB (2014) Physiological approach to assessment of acid-base disturbances. New Engl J Med 371:1434–1445

    Article  PubMed  Google Scholar 

  47. Corey HE (2005) Bench-to-bedside review: fundamental principles of acid-base physiology. Crit Care 9:184–192

    Article  PubMed  Google Scholar 

  48. Adrogue HJ, Madias NE (1995) Mixed acid-base disorders. In: Jacobson HR, Striker GE, Klarh S (eds) The principles and practice of nephrology, 2nd edn. Mosby-Year Book, St Louis, pp 953–962

    Google Scholar 

  49. Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10:51–55

    Article  CAS  PubMed  Google Scholar 

  50. Emmett M, Narins RG (1994) Mixed acid-base disorders. In: Maxwell MH, Kleeman CR, Narins RG (eds) Clinical disorders of fluid and electrolyte metabolism, 5th edn. Mac Graw Hill, New York, pp 991–1007

    Google Scholar 

  51. Fall PJ (2000) A stepwise approach to acid-base disorders. Practical patient evaluation for metabolic acidosis and other conditions. Postgrad Med 107:75–82

    Article  CAS  PubMed  Google Scholar 

  52. Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Resp Crit Care Med 162:2246–2251

    Article  CAS  PubMed  Google Scholar 

  53. Sirker AA, Rhodes A, Grounds RM, Benett ED (2002) Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 57:348–356

    Article  CAS  PubMed  Google Scholar 

  54. Story DA, Tosolini A, Bellomo R, Leblanc M, Bragantini L, Ronco C (2005) Plasma acid-base changes in chronic renal failure: a Stewart analysis. Int J Artif Organs 28:961–965

    CAS  PubMed  Google Scholar 

  55. Constable PD (2003) Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg 96:919–922

    Article  CAS  PubMed  Google Scholar 

  56. Ichai C, Levraut J (2003) Hyperchloremic metabolic acidosis and fluid resuscitation. Crit Care & Shock 6:31–39

    Google Scholar 

  57. Gattinoni L, Lissoni A (1998) Pathophysiology and diagnosis of respiratory acid-base disturbances in patients with critical illness. In: Ronco C, Bellomo R (eds) Critical Care Nephrology. Kluwer Academic Publisher, Dordrecht, pp 297–311

    Chapter  Google Scholar 

  58. Gauthier PM, Szerlip HM (2002) Metabolic acidosis in the intensive care unit. Crit Care Clin 18:289–308

    Article  CAS  PubMed  Google Scholar 

  59. Narins RG, Krishna GG, Yeel J, Ikemiyashiro D, Schmidt RJ (1994) The metabolic acidosis. In: Maxwell MH, Kleeman CR, Narins RG (eds) Clinical disorders of fluid and electrolyte metabolism, 5th edn. Mac Graw Hill, New York, pp 769–825

    Google Scholar 

  60. Levraut J, Bounatirou T, Ichai C, Ciais JF, Jambou P, Grimaud D (1997) Reliability of anion gap as an indicator of blood lactate level in critically ill patients. Intensive Care Med 23:417–422

    Article  CAS  PubMed  Google Scholar 

  61. Cusack RJ, Rhodes A, Lochhead P et al (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28:864–869

    Article  CAS  PubMed  Google Scholar 

  62. Rocktaeschel J, Morimatsu H, Uchino S et al (2003) Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 31:2131–2134

    Article  CAS  PubMed  Google Scholar 

  63. Galla JH (1995) Metabolic alkalosis. In: Arieff AI, DeFronzo F (eds) Fluid, electrolyte and acid-base disorders, 2nd edn. Churchill Livingston, New York, pp 199–221

    Google Scholar 

  64. Sabatini S (1996) The cellular basis of metabolic alkalosis. Kidney Int 49:906–917

    Article  CAS  PubMed  Google Scholar 

  65. Ichai C, Verdier JF, Grimaud D (1997) Les alcaloses. In: Société Française d'Anesthésie et de Réanimation ed. Conférence d'actualisation. Elsevier, Paris, pp 499–521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Ichai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Quintard, H., Orban, JC., Ichai, C. (2018). Interpretation of Acid-Base Disorders. In: Ichai, C., Quintard, H., Orban, JC. (eds) Metabolic Disorders and Critically Ill Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-64010-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64010-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64008-2

  • Online ISBN: 978-3-319-64010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics