Miniature EBG Two U-Shaped Slot PIFA MIMO Antennas for WLAN Applications

  • Z. Z. Abidin
  • S. M. Shah
  • Y. Ma


In recent years, EBG has emerged to be one of the vital technologies for developing the characteristics of the antenna. The EBG technology manipulates the substrate in such a way that surface waves are completely forbidden from forming, resulting in antenna efficiency and bandwidth improvements, while reducing the side lobes and electromagnetic interference levels. EBG is also used to improve the isolation and diversity gain in MIMO systems. EBG is also used to get notched characteristic in ultra-wideband antenna. In this chapter, a compact dual U-shaped slot planar inverted-F antenna (PIFA) antenna with electromagnetic band gap (EBG) material on a relatively low dielectric constant substrate is presented. The EBG material suitable for a small terminal mobile handset operating at 2.4 GHz was investigated. Simulated and measured scattering parameters are compared for U-shaped slot PIFA antenna with and without EBG structures. EBG structures have found to reduce mutual coupling and reduce the separation of the antenna and ground plane. An evaluation of MIMO antennas is presented, with analysis of the mutual coupling, correlation coefficient, total active reflection coefficient (TARC), channel capacity and capacity loss. The proposed antenna meets the requirements for practical application within a mobile handset.


Electromagnetic band gap (EBG) MIMO antenna Isolation Shorting pin PIFA 


  1. 1.
    C.M. Soukoulis, Photonic crystals and light localization in the 21st century. NATO ASI Series C 563, 475–487 (2001)Google Scholar
  2. 2.
    S. Sundhakaran, Negative refraction from electromagnetic periodic structures and its applications, Ph.D. Dissertation, Department of Electronic Engineering, Queen Mary, University of London, 2006Google Scholar
  3. 3.
    D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolus, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave. Theory. Tech 47, 2059–2074 (1999)CrossRefGoogle Scholar
  4. 4.
    S.D. Assimonis, T.V. Yioultsis, C.S. Antonopoulos, Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction. IEEE Trans. Antennas Propag. 60, 4944–4949 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Kurra, M.P. Abegaonkar, A. Basu, S.K. Koul, FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna. IEEE Antennas Wireless Propag Lett 15, 1606–1609 (2015)CrossRefGoogle Scholar
  6. 6.
    A.M. Soliman, D.M. Elsheakh, E.A. Abdallah, H. El-Hennawy, Design of planar inverted-F antenna over uniplanar EBG structure for laptop MIMO applications. Microw. Opt. Technol. Lett. 57, 277–285 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Luberto, W. G. Fano, in Microstrip antenna design using EBG (Electromagnetic Band Gap) structures at 2.4GHz, XVI Workshop on Information Processing and Control (RPIC), (Argentina, 2015), pp. 1–7Google Scholar
  8. 8.
    M.F. Abedin, M.Z. Azad, M. Ali, Wideband smaller unit-cell planar EBG structures and their application. IEEE Trans. Antennas Propag. 56, 903–908 (2008)CrossRefGoogle Scholar
  9. 9.
    B.-Q. Lin, X.-Y. Ye, X.-Y. Cao, F. Li, Uniplanar EBG structure with improved compact and wideband characteristics. Electron. Lett. 44, 1362–1363 (2008)CrossRefGoogle Scholar
  10. 10.
    W. Wang, X.-y. Cao, W.-y. Zhou, T. Liu, A novel compact uni-planar electromagnetic band-gap (UC-EBG) structure. Int. Conf. Microwave Millimeter Wave Technol 4, 1634–1636 (2008)Google Scholar
  11. 11.
    Z. Z. Abidin, R.A.Abd-Alhameed, N. J. McEwan, S. M. R. Jones, K. N. Ramli, and A. G. Alhaddad, in “Design and Analysis of UC-EBG on Mutual Coupling Reduction”, Antennas & Propagation Conference, (LAPC 2009), (Loughborough, 2009), pp. 693–696Google Scholar
  12. 12.
    A. Aminian, F. Yang, Y. Rahmat-Samii, In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes. Antennas Propag Soc. Int. Symp. IEEE 4, 430–433 (2003)Google Scholar
  13. 13.
    CST Microwave Studio [Online]. Available: http/
  14. 14.
    M. Manteghi, Y. Rahmat-Samii, Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations. IEEE Trans. Antennas Propag. 53, 466–474 (2005)CrossRefGoogle Scholar
  15. 15.
    R.G. Vaughan, J.B. Andersen, Antenna diversity in mobile communication. IEEE Trans. Veh. Technol. 36, 149–172 (1987)CrossRefGoogle Scholar
  16. 16.
    S. Blanch, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39, 705–707 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Thaysen, K.B. Jakobsen, Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microw. Opt. Technol. Lett. 48, 832–834 (2006)CrossRefGoogle Scholar
  18. 18.
    S.H. Chae, S.-k. Oh, S.-O. Park, Analysis of mutual coupling, correlations, and TARC in WIBro MIMO array antenna. IEEE Antennas Wireless. Propag. Lett. 6, 122–125 (2007)CrossRefGoogle Scholar
  19. 19.
    H. Shin, J.H. Lee, Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inform. Theory 49, 2636–2647 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. Valderas, P. Crespo, C. Ling, UWB portable printed monopole array design for MIMO communications. Mirowave. Opt. Technol. Lett 52, 889–895 (2010)CrossRefGoogle Scholar
  21. 21.
    G.J. Foschini, M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)CrossRefGoogle Scholar
  22. 22.
    H.-T. Hu, F.-C. Chen, Q.-X. Chu, A wideband U-shaped slot antenna and its application in MIMO terminals. IEEE Antennas Wirel. Propag. Lett 15, 508–511 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Z. Abidin, Y. Ma, R. A. Abd-Alhameed, K. N. Ramli, D. Zhou, M. S. Bin-Melha, J. M. Noras, R. Halliwell, in Design of 2 × 2 U-shape MIMO slot antennas with EBG material for mobile handset applications, Progress In Electromagnetics Research Symposium Proceedings, (Marrakesh, Morocco, 2011), pp. 1275–1278Google Scholar
  24. 24.
    Z. Z. Abidin, Design, modeling, and implementation of antennas using electromagnetic bandgap material and defected ground planes, Ph.D. Thesis, University of Bradford (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Research Center of Applied ElectromagneticUniversiti Tun Hussein Onn Malaysia Parit RajaBatu PahatMalaysia
  2. 2.National Astronomical Observatories (NAOC), Chinese Academy of SciencesChaoyangChina

Personalised recommendations