Miniaturized Monopole Wideband Antenna with Tunable Notch for WLAN/WiMAX Applications

  • Issa Elfergani
  • Abubakar Sadiq Hussaini
  • Jonathan Rodriguez
  • Abdelgader Abdalla
  • Ifiok Otung
  • Charles Nche
  • Mathias Fonkam
  • Babagana M. Mustapha
Chapter

Abstract

A tunable notched band small monopole antenna is studied and investigated in this chapter. The rejected band was achieved by introducing an additional inner crescent shape along with an outer shape over the surface of the substrate. By placing a small capacitor (varactor) between the inner and outer arches, the center frequency of each notch can be individually shifted downward. The antenna exhibits a wide impedance bandwidth from 1.5 to 5 GHz with good impedance matching (VSWR ≤2) and a tunable range of band rejection frequency (center frequency from 2.38 to 3.87 GHz). To validate the theoretical results, the antenna is fabricated and tested. Simulated and measured results are presented and show a wideband impedance bandwidth with a reconfigurable notched band, stable radiation patterns, and constant gain.

Keywords

Printed monopole antenna Bandwidth Rejected band Wide band Varactor 

Notes

Acknowledgments

This work was carried out under a grant from the Fundação para a Ciência e a Tecnologia (FCT - Portugal), with the reference number SFRH / BPD / 95110 / 2013. The research leading to these results received funding from the Fundação para a Ciência e Tecnologia and the ENIAC JU (THINGS2DO–GA n. 621221).

References

  1. 1.
    R. Singh, G. Kumar, Broadband planar monopole antennas, M.Tech credit seminar report, Electronics System Group, EE Dept, IIT Bombay, 2003Google Scholar
  2. 2.
    M. Ammann, Control of the impedance bandwidth of wideband planar monopole antennas using a beveling technique. Microw. Opt. Technol. Lett. 30(4), 229–232 (2001)CrossRefGoogle Scholar
  3. 3.
    N.P. Agrawall, G. Kumar, K. Ray, Wide-band planar monopole antennas. IEEE Trans. Antennas Propag. 46(2), 294–295 (1998)CrossRefGoogle Scholar
  4. 4.
    J.-Y. Jan, J.-W. Su, Bandwidth enhancement of a printed wide-slot antenna with a rotated slot. IEEE Trans. Antennas Propag. 53(6), 2111–2114 (2005)CrossRefGoogle Scholar
  5. 5.
    S.-W. Su, K.-L. Wong, H.-T. Chen, Broadband low-profile printed T-shaped monopole antenna for 5-GHz WLAN operations. Microw. Opt. Technol. Lett. 42, 243–244 (2004)CrossRefGoogle Scholar
  6. 6.
    Z.N. Chen, Broadband planar monopole antenna. IEE Proc Microwave Antennas Propagat 147, 526–528 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Duhan, B. Singh, M. Zayed, H. Rana, G. Tiwari, S. Yadav, Compact monopole wideband antenna for WiMAX/WLAN/BLUETOOTH/IEEE 802.11y services. The Eighth International Conference on Contemporary Computing (IC3).20–22, 2015, Noida, India.p. 1–4Google Scholar
  8. 8.
    R. Zhu, X. Wang, G. Yang, A wideband monopole antenna using parasitic elements. Applied Mechanics and Materials, Trans. Tech. Publications, Switzerland 52–54, 1515–1519 (2011)CrossRefGoogle Scholar
  9. 9.
    C.F. Tseng, C.L. Huang, C.H. Hsu, Microstrip-fed monopole antenna with a shorted parasitic element for wideband application. Progress In Electromagnetics Research Letters 7, 115–125 (2009)CrossRefGoogle Scholar
  10. 10.
    A.T. Mobashsher, B. Bais, N. Misran, M.T. Islam, Compact wideband microstrip antenna for universal 5 GHz WLAN applications. Aust. J. Basic Appl. Sci. 4(8), 3411–3417 (2010)Google Scholar
  11. 11.
    C.H. See, R.A. Abd-Alhameed, F. Elmegri, D. Zhou, J.M. Noras, N.J. McEwan, S.M.R. Jones, P.S. Excell, Planar monopole antennas for new generation mobile and lower band ultra-wide band applications. IET Microwave Antennas Propag 6, 1207–1214 (2012)CrossRefGoogle Scholar
  12. 12.
    M.N. Suma, P.C. Bybi, P. Mohanan, A wideband printed monopole antenna for 2.4-GHz WLAN applications. Microw. Opt. Technol. Lett. 48(5), 871–873 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Saou-Wen, K.-L. Wong, H.-T. Chen, Broadband low-profile printed T-shaped monopole antenna for 5-Ghz WLAN operation. Microw. Opt. Technol. Lett. 42(3), 234–245 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Singh, S. Singh, A novel CPW-fed wideband printed monopole antenna with DGS. Int. J. Electron. Commun. 69(1), 299–306 (2015)CrossRefGoogle Scholar
  15. 15.
    H.I. Hraga, C.H. See, R.A. Abd-Alhameed, D.Zhou, S. Adnan, I.T.E. Elfergani, P. S. Excell, Small wideband antenna for GSM and WLAN applications. In proceedings of the European Conference on Antennas and Propagation: EuCAP, 2010, Barcelona, SpainGoogle Scholar
  16. 16.
    M. Naghshvarian-Jahromi, N. Komjani, Novel fractal monopole wideband antenna. J Electromagn. Waves and Appl. 22, 195–205 (2008)CrossRefGoogle Scholar
  17. 17.
    M.N. Shakib, M. Moghavvemi, W.N.L. Mahadi Optimization of planar monopole wideband antenna for wireless communication system, 1–15, (2016). doi:10.1371/journal.pone.0168013Google Scholar
  18. 18.
    Y.Y. Sun, S.W. Cheung, T.I. Yuk, Planar monopole ultra-wideband antennas with different radiator shapes for body-centric wireless networks. Progress In Electromagn Res Symp Proc, KL, MALAYSIA 27–30, 839–843 (2012)Google Scholar
  19. 19.
    G. Bozdag, A. Kustepeli, Wideband printed planar monopole antenna for PCS, UWB and X-band applications. Progress In Electromagnetics Research C 60, 95–103 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Lu, Y. Huang, Senior Member, IEEE, Hassan Tariq Chattha, and Ping Cao “reducing ground-plane effects on UWB monopole antennas”. IEEE Antennas Wirel Propag Lett 10, 147–150 (2011)CrossRefGoogle Scholar
  21. 21.
    W.S. Chen, P.Y. Chang, B.Y. Lee, H.T. Chen, J.-S. Kuo, A compact microstrip-fed slot antenna with a dual-band notched function for WiMAX Operation Antennas and Propagation Society International Symposium (APSURSI) (Ontario, Canada, Toronto, 2010), pp. 1–4Google Scholar
  22. 22.
    W.S. Lee, D.Z. Kim, J.W. Yu, Wideband crossed planar monopole antenna with the band-notched characteristic. Microw. Opt. Technol. Lett. 48(3), 543–545 (2006)CrossRefGoogle Scholar
  23. 23.
    J.-B. Jiang, Z.-H. Yan, C. Wang, A novel compact UWB notchfilter antenna with a dual-Y-shaped slot. Progr. Electromagn. Res. Lett. 14, 165–170 (2010)CrossRefGoogle Scholar
  24. 24.
    Y.K. Manish Sharma, H.S. Awasthi, R. Kumar, S. Kumari, Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications. Eng Sci Technol Int J 19, 1626–1634 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Pancera, D. Modotto, A. Locatelli, F.M. Pigozzo, C. De Angelis, Novel design of UWB antenna with band-notch capability, in Proc. Eur. Conf. on Wireless Technologies, 2007, p. 48–50Google Scholar
  26. 26.
    Y.F. Weng, W.J. Lu, S.W. Cheung, T.I. Yuk, UWB antenna with single or dual band-notched characteristic for WLAN band using meandered ground stubs, in Proc. Loughborough Antennas and Propagation Conf. (LAPC), 2009, p. 757–760Google Scholar
  27. 27.
    C.M. Li, L.H. Ye, Improved dual band-notched UWB slot antenna with controllable notched bandwidths. Prog. Electromagn. Res. 115, 477–493 (2011)CrossRefGoogle Scholar
  28. 28.
    P. Lin, R. Cheng-Li, UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Trans. Microw. Theory Tech. 59, 1074–1081 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.-B. Yang, F.-S. Zhang, F. Zhang, L. Zhang, Y.-C. Jiao, Design of novel wideband monopole antenna with a tunable notched-band for 2.4 GHz WLAN and UWB applications. Prog Electromagn Res Lett 13, 93–102 (2010)CrossRefGoogle Scholar
  30. 30.
    W.-M. Li, T. Ni, S.-M. Zhang, J. Huang, Y.-C. Jiao, UWB printed slot antenna with dual band-notched characteristic. Prog Electromagn Res Lett 25, 143–151 (2011)CrossRefGoogle Scholar
  31. 31.
    J.-Q. Sun, X.-M. Zhang, Y.-B. Yang, R. Guan, L. Jin, Dual band-notched ultra-wideband planar monopole antenna with M- and W-slots. Prog Electromagn Res Lett 19, 1–8 (2010)CrossRefGoogle Scholar
  32. 32.
    S.K. Mishra, R. Gupta, A. Vaidya, J. Mukherjee, Printed fork shaped dual band monopole antenna for bluetooth and UWB applications with 5.5 ghz wlan band notched characteristics. Prog Electromagn Res C 22, 195–210 (2011)CrossRefGoogle Scholar
  33. 33.
    J. Yeo, R. Mittra, A novel wideband antenna package design with a compact spatial-notch filter for wireless applications. Microw. Opt. Technol. Lett. 35, 455–460 (2002)CrossRefGoogle Scholar
  34. 34.
    L. Wen-jun, C. Chong-hu, Z. Hong-bo, Improved frequency notched ultrawideband slot antenna using square ring resonator. IEEE Trans. Antennas Propag. 55, 2445–2450 (2007)CrossRefGoogle Scholar
  35. 35.
    C. Tang, N. Yang, A novel compact UWB antenna with triple notched bands using square ring short stub loaded resonator. Prog Electromagn Res Lett 58, 17–22 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Wu, Y.B. Li, R.Y. Wu, C.B. Shi, T.J. Cui, Band-notched UWB antenna with switchable and tunable performance. Int J Antennas Propag. Article ID 9612987, 1–6, 2016Google Scholar
  37. 37.
    S.A. Aghdam, J. Bagby, Resonator type for the creation of a potentially reconfigurable filtering band in a UWB antenna. Prog Electromag Res Lett 52, 17–21 (2015)CrossRefGoogle Scholar
  38. 38.
    V. Sharbati, P. Rezaei, M.M. Fakharian, E. Beiranvand, A switchable band-notched UWB antenna for cognitive radio applications. IETE J Res 61(4), 423–428 (2015)CrossRefGoogle Scholar
  39. 39.
    T. Li, H. Zhai, L. Li, C. Liang, Y. Han, Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator. IEEE Antennas Wirel Propag Lett 11, 1584–1587 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Malik, P.K. Velalam, M.V. Kartikeyan, Continuously tunable bandnotched ultrawideband antenna. Microw. Opt. Technol. Lett. 57(4), 924–928 (2015)CrossRefGoogle Scholar
  41. 41.
    H.A. Mohamed, A.S. Mohra, Controllable band-notched UWB printed monopole antenna. Int J Eng Res 5(2), 110–114 (2016)Google Scholar
  42. 42.
    I.T.E. Elfergani, A.S. Hussaini, P. Marques, R.A. Abd-Alhameed, C.H. See, J. Rodriguez, A miniaturized monopole wideband antenna with reconfigurable band rejection for WLAN/WiMAX, CST Int Conf. Wireless Int – WICON, Lisbon, Portugal. 146, 1–6, 2014Google Scholar
  43. 43.
    Ansoft high frequency structure simulator v10 user guide (CA, USA) (n.d.)Google Scholar
  44. 44.
    R.W. Johnston, J.G. McRory, An improved small antenna radiation-efficiency measurement. IEEE Antenna Propagat. Soc. Mag. 40, 40–48 (1998)CrossRefGoogle Scholar
  45. 45.
    D. Agahi and W. Domino, Efficiency measurements of portable handset antennas using the wheeler cap, Appl Microwave Wireless. 12, 32–34 (2000)Google Scholar
  46. 46.
    H.Choo, R. Rogher, H. Ling, On the Wheeler cap measurement of the efficiency of microstrip, IEEE Transactions on Antennas and Propagation, 53(7), (2005), 2328–2332Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Issa Elfergani
    • 1
  • Abubakar Sadiq Hussaini
    • 1
    • 2
  • Jonathan Rodriguez
    • 1
    • 3
  • Abdelgader Abdalla
    • 1
  • Ifiok Otung
    • 3
  • Charles Nche
    • 2
  • Mathias Fonkam
    • 2
  • Babagana M. Mustapha
    • 4
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.School of Information Technology & ComuptingAmerican University of NigeriaYolaNigeria
  3. 3.University of South WalesPontypriddUK
  4. 4.Department of Electrical & Electronics EngineeringUniversity of MaiduguriMaiduguriNigeria

Personalised recommendations