Electrically Small Planar Antennas Based on Metamaterial

  • Mohamed Lashab
  • Naeem Ahmad Jan
  • Fatiha Benbdelaziz
  • Chems Eddine Zebiri


Planar antennas are suitable for broadband solution applications due to their low profile, wide bandwidth, ease of manufacturing, and simple geometry. They include antennas with planar radiators such as microstrip antennas, suspended plate antennas, coplanar waveguide (CPW) antennas, planar monopole antennas, and planar inverted-L and inverted-F antennas (PILAs and PIFAs). Applications have covered cellular phone systems and wireless local area networks (WLANs), wireless personal area networks (WPANs), and Worldwide Interoperability for Microwave Access (WiMAX). Planar electrically small antennas (ESAs) are a new research topic, and many researchers are interested in working on its subtopics. This research work has been extensively studied over the decades for different microwave applications (Christou and Polycarpou, IEEE Trans Electromagn Compat 59(2), 2017; Manteghi, IEEE Trans Antennas Propag 64(4), 2016). Due to its compact dimension, an ESA always exhibits a high impedance mismatch, high quality factor, and low cross-polarization especially for a planar antenna; also, it provides good overall efficiency (OE) and a narrow fractional bandwidth (FBW). For an ESA, there is always an essential lower bound on the quality factor concerning the antenna’s physical size and operating wavelength or frequency range.

Metamaterials, known as artificial materials, have attracted great attention due to their unique electromagnetic properties. Various types of metamaterial have been proposed with different characteristics—e.g., negative permittivity and negative permeability or both negative values, known as double negative (DNG) (Daniele et al., IEEE Antennas Wirel Propag Lett 12, 2013)—for with these values of the constitutive parameters, the material provides interesting properties that can be implemented in the antenna, especially for the coplanar waveguide negative refractive index, magnetic conductivity, etc. These unusual properties play an important role in modern antenna design, which can provide better performance, more functions, and more flexibility.

Recent advances in antenna design technology have led to zero order resonators (ZORs), which mainly started from composite right/left handedness (CRLH), which started the theory of transmission line (TL) properties considered as metamaterial behavior; this was developed for the first time by Caloz and Itoh (IEEE Trans Antennas Propag 52(5), 2004). The CRLH-TL technology is based on a combination of essential parts as right hand (RH) and left hand (LH) electric equivalent circuits; these two parts make the antenna resonate on frequencies that are independent of its dimensions. With regard to antennas with resonant structures such as SRRs (split ring resonators), they are generally lossy, narrow banded, and also difficult to implement for microwave applications. LHMs (left hand metamaterials) developed from TL theory in general offer a very wide band and very low losses. Many research works have proved that a ZOR-TL can be used to provide an electrically small antenna, which looks like using electrically large antennas; also, ESAs can be manufactured widely to improve matching and radiation properties. This feature can be used to design miniature antennas for passive radiofrequency identification (RFID) applications (Turalchuk et al., IEEE Antennas Wirel Propag Lett 14, 2015) and also for miniaturized WiMAX and WLAN antenna circuits (Li and Zhu, IEEE Antennas Wirel Propag Lett 12, 2013).

In this research, planar antennas such as coplanar waveguides loaded with different types of metamaterial such as SRRs, ZORs, and CRLH-TLs are studied in order to exhibit the miniaturization effect, these antennas are generally applied for wireless communication (WLAN and WiMAX).


Electrically small antennas Metamaterials WLAN WiMAX monopole antenna 


  1. 1.
    M.A. Christou, A.C. Polycarpou, Far-field scattering from an electrically small circular aperture in a conducting screen. IEEE Trans. Electromagn. Compat. 59(2), 404–410 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Jang, Z. Cheng, H. Youn, J. Zhou, L. Jay Guo, Semi-transparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh. IEEE Trans. Antennas Propag. 65(1), 150–158 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Ignatenko, D.S. Filipovic, On the design of vehicular electrically small antennas for NVIS communications. IEEE Trans. Antennas Propag. 64(6), 2136–2145 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Manteghi, A wideband electrically small transient state antenna. IEEE Trans. Antennas Propag. 64(4), 1201–1208 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V.G. Daniele, R.D. Graglia, G. Lombardi, P.L.E. Uslenghi, Size-independent cylindrical resonator half-filled with DNG metamaterial and excited by a line source. IEEE Antennas Wireless Propag. Lett. 12, 785–788 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Caloz, T. Itoh, Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Trans. Antennas Propag. 52(5), 1159–1166 (2004)CrossRefGoogle Scholar
  7. 7.
    P. Turalchuk, I. Munina, M. Derkach, O. Vendik, I. Vendik, Electrically small loop antennas for RFID applications. IEEE Antennas Wireless Propag. Lett. 14, 1786–1789 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Li, Z. Cheng, Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas Wireless Propag. Lett. 12, 678–681 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Zhu, R.W. Ziolkowski, Active metamaterial-inspired broad-bandwidth, efficient, electrically small antennas. IEEE Antennas Wireless Propag. Lett. 10, 1582–1585 (2011)CrossRefGoogle Scholar
  10. 10.
    R.W. Ziolkowski, Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006)CrossRefGoogle Scholar
  11. 11.
    E.E. Altshuler, T.H. O'Donnell, An electrically small multi-frequency genetic antenna immersed in a dielectric powder. IEEE Antennas Propag. Mag. 53(5), 33–40 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Simpson, Electrically small spheroidal loops wound on hollow ferrite cores. IEEE Propag. Mag. 50(3), 88–94 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Paredes, G. Zamora, F. Martin, J. Bonache, Miniaturization of RFID Tag by Means of an Electrically Small Resonator. 2010 IEEE International Conference on Wireless Information Technology and SystemsGoogle Scholar
  14. 14.
    S. Zuffanelli, G. Zamora, P. Aguilà, F. Paredes, F. Martin, J. Bonache, Passive UHF-RFID Tag Based On Electrically Small Square-Shaped Split Ring Resonator (SRR) Antenna. 2016 IEEE International Symposium On Antennas And Propagation (Apsursi)Google Scholar
  15. 15.
    K.B. Alici, E. Ozbay, Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples. IEEE J. Sel. Topics Quantum Electron. 16(2), 386–393 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Lubkowski, R. Schuhmann, T. Weiland, Extraction of effective metamaterial parameters by parameter fitting of dispersive models. Microw. Opt. Technol. Lett. 49(2), 285–288 (2007)CrossRefGoogle Scholar
  17. 17.
    R.W. Ziolkowski, P. Jin, J.A. Nielsen, M.H. Tanielian, C.L. Holloway, Experimental verification of Z antennas at UHF frequencies. IEEE Antennas Wireless Propag. Lett. 8, 1329–1333 (2009)CrossRefGoogle Scholar
  18. 18.
    E. Lier, Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns. IEEE Antennas Propag. Mag. 52(2), 31–39 (2010)CrossRefGoogle Scholar
  19. 19.
    F. Bilotti, L. Di Palma, D. Ramaccia, A. Toscano, Self-filtering low-noise horn antenna for satellite applications. IEEE Antennas Wireless Propag. Lett. 11, 354–357 (2012)CrossRefGoogle Scholar
  20. 20.
    Guo Qing Luo, Wei Hong, , Hong Jun Tang, Ji Xin Chen, Xiao Xin Yin, Zhen Qi Kuai, Ke Wu, “Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS”, IEEE Trans. Antennas Propag., 55, 1. 92–98, 2007CrossRefGoogle Scholar
  21. 21.
    R.W.P. King, The Theory of Linear Antennas (Harvard University Press, Cambridge, 1956), p. 184CrossRefGoogle Scholar
  22. 22.
    K. Fujimoto, H. Morishita, Modern Small Antennas (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar
  23. 23.
    H.A. Wheeler, Fundamental limitations of small antennas. Proc. IRE 35, 1479–1484 (1947)CrossRefGoogle Scholar
  24. 24.
    Y. Zheng, J. Wang, Y. Luo, Extremely broad bandwidth input/output coupling structure design for a Q band sheet-beam traveling-wave tube. IEEE Antennas Propag. Mag. 42(10), 3339–3343 (2014)Google Scholar
  25. 25.
    G.S. Moschytz, High high-q factor insensitive active RC network, similar to the Tarmy-Ghausi circuit but using single-ended operational amplifiers. Electron. Lett. 08(18), 458–459 (1972)CrossRefGoogle Scholar
  26. 26.
    D.S. Nagarkoti, Y. H., K.Z. Rajab, Q-bandwidth enhancement of an antenna using non-Foster circuit based on negative differential resistance devices. 2016 10th European Conference on Antennas and Propagation (EuCAP)Google Scholar
  27. 27.
    C. Zebiri, M. Lashab, F. Benabdelaziz, Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substrate-superstrate. IET Microw. Antennas Propag. 05(01), 17–29 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, G. Ci, Y. Cao, N. Wang, H. Tian, A wide bandgap slot fractal UC-EBG based on Moore space-filling geometry for microwave application. IEEE Antennas Wireless Propag. Lett. 16, 33–37 (2016)CrossRefGoogle Scholar
  29. 29.
    R.M. Hashmi, B.A. Zeband, K.P. Esselle, Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans. Antennas Propag. 62(6), 2970–2977 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Zong, G. Wang, C. Zhou, Y. Wang, Compact low-profile dual-band patch antenna using novel TL-MTM structures. IEEE Antennas Wireless Propag. Lett. 14, 567–570 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Li, M.F. Iskander, Z. Zhang, A new low cost leaky wave coplanar waveguide continuous transverse stub antenna array using metamaterial-based phase shifters for beam steering. IEEE Trans. Antennas Propag. 61(7), 3511–3518 (2013)CrossRefGoogle Scholar
  32. 32.
    T.J. Cui, D.R. Smith, R. Liu, Metamaterial, Theory, Design and Applications (Springer, New York/Dordrecht/Heidelberg/London, 2010)Google Scholar
  33. 33.
    C. Sabah, S. Uckun, Multilayer system of Lorentz-Drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog. Electromagn. Res. 91, 349–364 (2009)CrossRefGoogle Scholar
  34. 34.
    D.R. Smith, S. Shultz, P. Markos, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)CrossRefGoogle Scholar
  35. 35.
    X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco, J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608-016601–016608-016607 (2004)Google Scholar
  36. 36.
    M. Rahm, D. Schurig, D.A. Roberts, S.A. Cummer, D.R. Smith, J.B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Phot. Nanostr. Fund. Appl. 6, 8795 (2008)Google Scholar
  37. 37.
    Z. Ruan, M. Yan, C.W. Neff, M. Qiu, Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations. Phys. Rev. Lett. 99, 113903 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Lashab, N.A. Jan, C. Zebiri, The I Shape Antenna Loaded With ZOR For WLAN and WiMAX Application. LAPC’15 Loughborough, 2015Google Scholar
  39. 39.
    M. Lashab, C. Zebiri, N.A. Jan, F. Benabdelaziz, R.A. Abd-Alhameed, M. Child, CPW-Fed Antenna Based on Metamaterial For Broadband Application. LAPC’14, Loughborough, 2014, UKGoogle Scholar
  40. 40.
    N.A. Jan, F. Elmegri, M. Bin-Melha, R.A. Abd-Alhameed, M. Lashab, C.H. See, Compact size uni-planer small metamaterial-inspired antenna for UWB applications. 2015 Internet Technologies and Applications (ITA)Google Scholar
  41. 41.
    Y.-J. Chi, F.-C. Chencompact, CPW-based zeroth-order resonant antenna with interleaving CRLHD unit cells. Prog. Electromagn. Res. C 40, 119–130 (2013)CrossRefGoogle Scholar
  42. 42.
    S.K. Sharma, A. Gupta, R.K. Chaudhary, Epsilon negative CPW-FED zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization. IEEE Trans. Antennas Propag. 36(11), 5197–5203 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    L. Li, Z. Jia, F. Huo, W. Han, A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application. IEEE Antennas Wireless Propag. Lett. 12, 1688–1691 (2013)CrossRefGoogle Scholar
  44. 44.
    H.-p. Li, G.-m. Wang, X.-j. Gao, L. Zhu, CPW-FED multiband monopole antenna loaded with DCRLH unit cell. IEEE Antennas Wireless Propag. Lett. 14, 1243–1246 (2015)CrossRefGoogle Scholar
  45. 45.
    S.R. Best, The significance of composite right/left-handed (CRLH) transmission-line theory and reactive loading in the design of small antennas. IEEE Antennas Propag. Mag. 56(4), 15–33 (2014)CrossRefGoogle Scholar
  46. 46.
    N. Amani, M. Kamyab, A. Jafargholi, A. Hosseinbeig, J.S. Meiguni, Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures. Electron. Lett. 50(12), 847–848 (2014)CrossRefGoogle Scholar
  47. 47.
    N.A. Jan, M. Lashab, C.E. Zebiri, D. Linda, R.A. Abd-Alhameed, F. Benabdelaziz, Compact CPW antenna loaded with CRLH-TL and EBG for multi-band and gain enhancement. 2016 Loughborough Antennas & Propagation Conference (LAPC)Google Scholar
  48. 48.
    H. Lee, D.-J. Woo, S. Nam, Compact and bandwidth-enhanced asymmetric coplanar waveguide (ACPW) antenna using CRLH-TL and modified ground plane. IEEE Antennas Wireless Propag. Lett. 15, 810–813 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Jang, J. Choi, S. Lim, Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer. IEEE Trans. Antennas Propag. 59(2), 363–372 (2011)CrossRefGoogle Scholar
  50. 50.
    S.-G. Mao, C.-M. Chen, D.-C. Chang, Modeling of slow-wave EBG structure for printed-bowtie antenna array. IEEE Antennas Wireless Propag. Lett. 1, 124–127 (2002)CrossRefGoogle Scholar
  51. 51.
    Y. Li, K.P. Esselle, Small EBG resonator high-gain antenna using in-phase highly-reflecting surface. Electron. Lett. 45(21), 1058–1060 (2009)CrossRefGoogle Scholar
  52. 52.
    K.-H. Chan, R. Ikeuchi, A. Hirata, Effects of phase difference in dipole phased-array antenna above EBG substrates on SAR. IEEE Antennas Wireless Propag. Lett. 12, 579–582 (2013)CrossRefGoogle Scholar
  53. 53.
    G. Expósito-Domínguez, J.-M. Fernandez-Gonzalez, P. Padilla, M. Sierra-Castaner, Mutual coupling reduction using EBG in steering antennas. IEEE Antennas Wireless Propag. Lett. 11, 1265–1268 (2013)CrossRefGoogle Scholar
  54. 54.
    L. Leger, T. Monediere, B. Jecko, Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw. Wireless Compon. Lett. 15(9), 573–575 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Lashab
    • 1
  • Naeem Ahmad Jan
    • 2
  • Fatiha Benbdelaziz
    • 3
  • Chems Eddine Zebiri
    • 4
  1. 1.Larbi Ben M’hidi UniversityO.E.BouaghiAlgeria
  2. 2.School of Engineering and Informatics, University of BradfordBradfordUK
  3. 3.Constantine UniversityConstantineAlgeria
  4. 4.Sétif universitySétifAlgeria

Personalised recommendations