Double-Monopole Crescent-Shaped Antennas with High Isolation for WLAN and WIMAX Applications

Chapter

Abstract

The mutual coupling between two closely spaced antennas and various techniques for its reduction are explained. Two configurations of a planar double antenna are proposed where one antenna is intended for WLAN and the other for WIMAX applications. Each antenna has the form of a crescent-shaped monopole. The lengths of the two radiating arcs are chosen for resonance at 2.45 GHz and 3.5 GHz to comply with the WLAN and WiMAX standards, respectively. The two monopoles have a small separation of 9 mm (0.0735 ;o at 2.45 GHz). A technique is proposed for reducing the mutual coupling between the two closely spaced antennas by etching a slot in each of the microstrip line feeding the two antennas. The slot length in each antenna is chosen such that it resonates at the operating frequency of the other antenna so that the frequency of the other antenna is notched out and lower coupling is achieved. Two configurations are investigated to obtain increased isolation between the two antennas. The simulations using CST Microwave Studio software show that the proposed methods can reduce the envelope correlation coefficient by 35-fold at the 2.45 GHz and 21-fold at the 3.5 GHz frequency bands.

Keywords

Dual band antennas Mutual coupling Envelope correlation coefficient Planar monopoles Printed antenna 

References

  1. 1.
    S.R. Saunders, A.A. Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd edn. (Wiley, Chichester, 2007)Google Scholar
  2. 2.
    J. Leivo, Improving the performance of strongly coupled antennas using a compensating transmission line network, MSc Thesis, Gothenburg, Chalmers University of Technology, 2009Google Scholar
  3. 3.
    S. Zhang, Investigating and enhancing performance of multiple antenna systems in compact MIMO/diversity terminals, PhD Thesis , KTH Royal Institute of Technology, Stockholm, 2013Google Scholar
  4. 4.
    R.J. Vaughan, J.B. Anderson, Antenna diversity in mobile communications. IEEE Trans. Veh.Technol. 36(4), 149–172 (1987)CrossRefGoogle Scholar
  5. 5.
    Y.-T. Wu, Q.-X. Chu, Dual-band multiple input multiple output antenna with slitted ground. IET Microwaves Antennas Propag. 8(13), 1007–1013 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Dossche, S. Blanch, J. Romeu, Optimum antenna matching to minimize signal correlation on a two-port antenna diversity system. Electron. Lett. 40(19), 1164–1165 (2004)CrossRefGoogle Scholar
  7. 7.
    S.-L. Zuo, Y.-Z. Yin, W.-J. Wu, Z.-Y. Zhang, J. Ma, Investigations of reduction of mutual coupling between two planar monopoles using two λ/4 slots. Prog. Electromagn. Res. Lett. 19, 10–18 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Cui, Y. Liu, W. Jiang, S.X. Gong, Compact dual-band monopole antennas with high port isolation. Electron. Lett. 47(10), 579–580 (2011)CrossRefGoogle Scholar
  9. 9.
    J. OuYang, F. Yang, Z.M. Wang, Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antenna Wirel. Propag. Lett. 10, 310–313 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Zhou, X. Quan, R. Li, A dual-broadband MIMO antenna system for GSM/UMTS/LTE and WLAN handsets. IEEE Antennas Wirel. Propag. Lett. 11, 551–554 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Shen, T. Guo, F. Kuang, X. Zhang, K. Wu, A novel wideband printed diversity antenna for mobile handsets, IEEE Vehicular Technology Conference (VTC), San Diego, 6–9 May 2012, pp. 1–5Google Scholar
  12. 12.
    S.H. Lee, C.Y. Yang, W.G. Yang, High isolation MIMO antenna design by using ground slits for mobile handset, Progress In Electro magnetics Research Symposium Proceedings, Moscow, 19–23 Aug 2012, pp. 589–592Google Scholar
  13. 13.
    Q. Rao, D. Wang, A compact, high isolation and wide bandwidth antenna array for long term evolution wireless devices. IEEE Trans. Antennas Propag. 60(10), 4960–4963 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Addaci, K. Haneda, P.L. Thuc, C. Luxey, R. Staraj, P. Vainikainen, Dual-Band WLAN multi antenna system and diversity/MIMO performance evaluation. IEEE Trans. Antennas Propag. 62(3), 1409–1415 (2014)CrossRefGoogle Scholar
  15. 15.
    K.M. Prasanna, S.K. Behera, A hexagonal MIMO antenna system with defected ground structure to enhance bandwidth and isolation, IEEE International Conference on Communication & Signal Processing, ICCSP, Melmaruvathur, TamilNadu, 3–5 Apr 2013Google Scholar
  16. 16.
    M. Naser-Moghadasi, R. Ahmadian, Z. Mansouri, F.B. Zarrabi, M. Rahimi, Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays. Prog. Electromagn. Res. C 53, 145–154 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Xiong, P. Gao, Compact dual-band printed diversity antenna for WIMAX/WLAN applications. Prog. Electromagn. Res. C 32, 152–165 (2012)CrossRefGoogle Scholar
  18. 18.
    C.H. See, R.A. Abd-Alhameed, N.J. Mcewan, P.S. Excell, Design of a printed MIMO/diversity monopole antenna for future generation handheld devices. Int. J. RF Microwave Comput. Aided Eng. 24(3), 348–359 (2014)CrossRefGoogle Scholar
  19. 19.
    H. See, R.A. Abd-Alhameed, Z.Z. Abidin, N.J. McEwan, P.S. Excell, Wideband printed MIMO/diversity monopole antenna for Wi Fi/WiMAX applications. IEEE Trans. Antennas Propag. 60(4), 2028–2035 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, G. Kossiavas, Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals. IET Microwaves Antennas Propag. 2(1), 93–101 (2008)CrossRefGoogle Scholar
  21. 21.
    Q. Luo, H.M. Salgado, J.R. Pereira, Compact printed monopole antenna array for dual-band WLAN application, IEEE International Conference on Computer as a Tool (EUROCON), Lisbon, 27–29 Apr 2011, pp. 1–4Google Scholar
  22. 22.
    M.A. Moharram, A.A. Kishk, General decoupling network design between two coupled antennas for MIMO applications. Prog. Electromagn. Res. Lett. 37, 134–142 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Sato, Y. Koyanagi, K. Ogawa, M. Takahashi, A method of dual-frequency decoupling for two-element MIMO antenna, Progress In Electromagnetics Research Symposium Proceedings, Stockholm, pp. 1853–1857, 12–15 Aug 2013Google Scholar
  24. 24.
    S.-C. Chen, Y.-S. Wang, S.-J. Chung, A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Trans. Antennas Propag. 56(12), 3650–3658 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Addaci, A. Diallo, C. Luxey, P.L. Thuc, R. Staraj, Dual-band WLAN diversity antenna system with high port-to-port isolation. IEEE Antennas Wirel. Propag. Lett. 11, 244–247 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Qin, Y.-F. Liu, Compact dual-band MIMO antenna with high port isolation for WLAN applications. Prog. Electromagn. Res. C 49, 97–104 (2014)CrossRefGoogle Scholar
  27. 27.
    A.A. Naser, K.H. Sayidmarie, J.S. Aziz, Compact High Isolation Meandered-Line PIFA Antenna for LTE (Band-Class-13) Handset Applications. Prog. Electromagn. Res. C 67, 153–164 (2016)CrossRefGoogle Scholar
  28. 28.
    A.M. Saleh, K.H. Sayidmarie, R.A. Abd-Alhameed, S. M. Jones, J.M. Noras, P.S. Excell, Compact tri-band MIMO antenna with high port isolation for WLAN and WiMAX applications, Antennas & Propagation Conference (LAPC), Loughborough, 14–15 Nov 2016Google Scholar
  29. 29.
    L.S.Yahya, K.H. Sayidmarie, F. Elmegri, R.A. Abd-Alhameed, Crescent- shaped double-monopole antennas with reduced coupling for WLAN and WIMAX applications, IEEE Internet Technologies and Applications (ITA), Sept 2015, pp. 393–398Google Scholar
  30. 30.
    K.H. Sayidmarie, L.S. Yahya, Design and analysis of dual band crescent shape monopole antenna for WLAN applications. Int. J. Electromagn. Appl. 3(4), 96–102 (2013)Google Scholar
  31. 31.
    L.S. Yahya, Analysis, modeling and design of multiband antennas for communicationsystems, Ph.D. Thesis, College of Engineering, University of Mosul, Iraq, Dec 2015Google Scholar
  32. 32.
    S.C.K. Ko, D. Murch, Compact integrated diversity antenna for wireless communications. IEEE Trans. Antennas Propag. 9(6), 954–960 (2001)CrossRefGoogle Scholar
  33. 33.
    S. Blanch, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description. IET Electron. Lett. 39(9), 705–707 (2003)CrossRefGoogle Scholar
  34. 34.
    H.U. Iddi, R. Kamarudin, T.A. Rahman, A.Y. Abdurahman, R. Dewan, A.S. Azini, Triple band planar monopole antenna for MIMO application, Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, 12–15 Aug 2013, pp. 1421–1424Google Scholar
  35. 35.
    K. Wang, L. Li, T.F. Eibert, A decoupling technique based on partially extended ground plane for compact two-port printed monopole antenna arrays, 8th German Microwave Conference, Aachen, 10–12 Mar 2014Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.College of Electronic Engineering Ninevah UniversityMosulIraq
  2. 2.Institute of TechnologyMosulIraq

Personalised recommendations