Dual-Band Planar Inverted F-L Antenna Structure for Bluetooth and ZigBee Applications

  • Chan H. See
  • George A. Oguntala
  • Wafa Shuaieb
  • J. M. Noras
  • Peter S. Excell
Chapter

Abstract

This chapter will present and analyse a compact and dual frequency inverted L-F antennas for the operating frequency bands to meet the requirement for IEEE 802.11a/b/g, Bluetooth and ZigBee standards; the optimal design providing a compromise between size reduction and attainable bandwidth. The antenna consists of an F-shaped radiator and L-shaped parasitic element with the optimum (minimized) volume of 30 × 30 × 8 mm3, thus making it feasible to be adopted within the portable wireless electronic devices. By controlling the geometry parameters of the radiator, the lower resonant operating band can be tuned to achieve 8% bandwidth. Likewise, by optimising the geometry parameters of the parasitic element, the upper operating frequency band can reach the required 12.2% bandwidth. Both the computed and measured features of the present antenna are in good agreement.

Keywords

Bandwidth IEEE 802.11a/b/g Planar inverted L-F antenna Dual frequency Feeding post 

References

  1. 1.
    L.O. Soo, B.P. Koh, P. Song, L. Lau, From a simple IFA to a dual band PIFA. International Workshop on on Antenna Technology, Chiba University, Japan, Mar 2008, pp. 386–389Google Scholar
  2. 2.
    Y.-B. Kwon, J.-I. Moon, S.-O. Park, An internal triple-band planar inverted-F antenna. IEEE Antennas Wireless Propag. Lett. 2, 341–344 (2003)CrossRefGoogle Scholar
  3. 3.
    C.-T. Lee, K.-L. Wong, Uniplanar printed coupled-fed PIFA with a band-notching slit for WLAN/WiMAX operation in the laptop computer. IEEE Trans. Antennas Propag. 57, 1252–1258 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Liu, B. Gaucher, A new multiband antenna for WLAN/cellular applications, IEEE Vehicular Technology Society Conference, Milan, vol. 1, Sept 2004, pp. 243–246Google Scholar
  5. 5.
    H.-C. Tung, S.-T. Fang, K.-L. Wong, Printed dual-band monopole antenna for 2.4/5.2GHz WLAN access point. Microw. Opt. Technol. Lett. 35(4), 286–288 (2002)CrossRefGoogle Scholar
  6. 6.
    D.D. Krishna, M. Gopikrishna, C.K. Anandan, P. Mohanan, K. Vasudevan, CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications. IEEE Antennas Wireless Propag. Lett. 7, 389–392 (2008)CrossRefGoogle Scholar
  7. 7.
    A.K. Skrivervik, J.-F. Zurcher, O. Staub, J.R. Mosig, PCS antenna design: The challenge of miniaturization. IEEE Antennas Propag. Mag. 43, 12–27 (2001)CrossRefGoogle Scholar
  8. 8.
    C.S. Lee, K.-H. Tseng, Size reduction of microstrip antennas. Electron. Lett. 37, 1274–1275 (2001)CrossRefGoogle Scholar
  9. 9.
    A.K. Shackelford, K.F. Lee, K.M. Luk, Design of small-size wide bandwidth microstrip-patch antennas. IEEE Antennas Propag. Mag. 45(1), 75–83 (2003)CrossRefGoogle Scholar
  10. 10.
    A.A. Deshmukh, G. Kumar, Half U-slot loaded rectangular microstrip antenna, in IEEE Antennas and Propagation Soc. Intl. Symp., Columbus, vol. 2, 2003, pp. 876–879Google Scholar
  11. 11.
    R. Chair, C.-L. Mak, K.-F. Lee, K.-M. Luk, A.A. Kishk, Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Trans. Antennas Propag. 53(8), 2645–2651 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Guo, S. Wang, X. Chen, C. Parini, Miniaturised antennas for UWB communications, Proc.European Conf. on Antennas and Propagation, Berlin, Germany, Mar 2009, pp. 3774–3778Google Scholar
  13. 13.
    C.H. See, R.A. Abd-Alhameed, D. Zhou, P.S. Excell, Dual-frequency planar inverted F-L-antenna (PIFLA) for WLAN and short range communication systems. IEEE Trans. Antennas Propag. 56, 3318–3320 (2008)CrossRefGoogle Scholar
  14. 14.
    C.H. See, R.A.Abd-Alhameed, D. Zhou, E.A. Elkhazmi, M.M. Abusitta, K.N. Ramli, P.S. Excell, Miniature dual-frequency half planar inverted F-L-antenna for WLAN/cellular applications, in the proceeding of Microwave Conference, 2009. APMC 2009, Asia Pacific, 7–10 Dec 2009, pp. 2802–2804Google Scholar
  15. 15.
    C.H. See, R.A. Abd-Alhameed, D. Zhou, P.S. Excell, A planar inverted F-L antenna (PIFLA) with a rectangular feeding plate for lower-band UWB applications. IEEE Antenna Wireless Propag. Lett. 9, 149–151 (2010)CrossRefGoogle Scholar
  16. 16.
    High Frequency Structure Simulator (HFSS), version 11, Ansoft LLC, PittsburghGoogle Scholar
  17. 17.
    SEMCAD X, version 14, Schmid & Partner Engineering AG, ZurichGoogle Scholar
  18. 18.
    R. Feick, H. Carrasco, M. Olmos, H.D. Hristov, PIFA input bandwidth enhancement by changing feed plate silhouette. Electron. Lett. 40, 921–922 (2004)CrossRefGoogle Scholar
  19. 19.
    H. Nakano, N. Ikeda, Y.-Y. Wu, R. Suzuki, H. Mimaka, J. Yamauchi, Realization of dual-frequency and wide-band VSWR performances using normal-mode helical and inverted-F antenna. IEEE Trans. Antennas Propag. 46, 788–793 (1998)CrossRefGoogle Scholar
  20. 20.
    R.W. Johnston, J.G. McRory, An improved small antenna radiation-efficiency measurement. IEEE Antenna Propag. Soc. Mag. 40(5), 40–48 (1998)CrossRefGoogle Scholar
  21. 21.
    H. Choo, R. Rogers, H. Ling, On the wheeler cap measurement of the efficiency of microstrip antennas. IEEE Trans. Antennas Propag. 53(7), 2328–2332 (2005)CrossRefGoogle Scholar
  22. 22.
    M.-C. Huynh, W. Stutzman, Ground plane effects on planar inverted-F antenna (PIFA) performance. IEE Proc.-Microw. Antennas Propag. 150(4), 209–213 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Chan H. See
    • 1
  • George A. Oguntala
    • 2
  • Wafa Shuaieb
    • 2
  • J. M. Noras
    • 2
  • Peter S. Excell
    • 3
  1. 1.School of Engineering, University of BoltonBoltonUK
  2. 2.School of Electrical Engineering and Computer Science, University of BradfordBradfordUK
  3. 3.Institute for Arts, Science and Technology, Glyndwr UniversityWrexhamUK

Personalised recommendations