Terahertz Communications for 5G and Beyond

  • Nadeem Naeem
  • Sajida Parveen
  • Alyani Ismail


A brief discussion about the exclusive properties and applications of terahertz technology is provided in this chapter. The frequency spectrum terahertz (THz) is also discussed. The applications of terahertz in the field of sensors and terahertz for communications are covered. State-of-the-art literature starting from the early to the latest research conducted is provided and analyzed in terms of the performance of terahertz systems. Terahertz, known as Tera waves or T-waves rather than submillimeter wave, has approximately a fraction of a wavelength less than 30 μm. T-wave is heavily used in sensing and imaging applications, and has no ionization hazards and is an excellent candidate frequency band to defeat the multipaths interference problems for pulse communications. The lower quantum energy of T-waves identifies its potential applications toward near-field imaging, telecommunications, spectroscopy, and sensing, including medical diagnoses and security screening. Identification of DNA signatures including complex real-time molecular dynamics through dielectric resonance is a good example of terahertz spectroscopy instruments nowadays. This concluding chapter will not only address the practical applications of terahertz communications, but also identify the research challenges that lie ahead in terms of terahertz antenna design.


TeraHertz Return loss Microstrip patch antenna Radiation efficiency shorting pin 


  1. 1.
    W. Withayachumnankul, D. Abbott, Metamaterials in the terahertz regime. IEEE Photonics J. 1(2), 99–118 (2009)CrossRefGoogle Scholar
  2. 2.
    N. Pala, A.N. Abbas, Terahertz technology for nano applications. Enc. Nanotechnol. 1, 2653–2667 (2012)Google Scholar
  3. 3.
    S. Ergün, S. Sönmez, Terahertz technology for military applications. J. Mil. Inf. Sci. 3(1), 13–16 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Planck (ed.), The Theory of Heat Radiation, 2nd edn. (P. Blakiston’s Sons & Co., Philadelphia, 1914), pp. 180–181Google Scholar
  5. 5.
    D. Woolard, R. Kaul, R. Suenram, A.H. Walker, T.Globus, A. Samuels, Terahertz electronics for chemical and biological warfare agent detection. in IEEE MTT-S International Microwave Symposium Digest (Anaheim, 1999), pp. 925–928Google Scholar
  6. 6.
    K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M. Tonouchi, Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13(1), 115–120 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91(18), 184102 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Cong, R. Singh, Sensing with THz metamaterial absorbers. arXiv Preprint- arXiv 1408, 3711 (2014)Google Scholar
  10. 10.
    S.J. Park, J.T. Hong, S.J. Choi, H.S. Kim, W.K. Park, S.T. Han, J.Y. Park, S. Lee, D.S. Kim, Y.H. Ahn, Detection of microorganisms using terahertz metamaterials. Sci. Rep. 4, 4988 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Sabah, Tunable metamaterial design composed of triangular split ring resonator and wire strip for S-and C-microwave bands. Prog. Electromagn. Res. B 22, 341–357 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Torun, F.C. Top, G. Dundar, A.D. Yalcinkaya, An antenna coupled split-ring resonator for biosensing. J. Appl. Phys. 116(12), 124701.1–124701.6 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Guo, L. He, H. Sun, H. Zhao, B. Li, X.W. Sun, A dual-band terahertz metamaterial based on a Hybrid'H'-shaped cell. Prog. Electromagn. Res. M 30, 39–50 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Jakšić, S. Vuković, J. Matovic, D. Tanasković, Negative refractive index metasurfaces for enhanced biosensing. Dent. Mater. 4(1), 1–36 (2010)Google Scholar
  15. 15.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25), 4773 (1996)CrossRefGoogle Scholar
  16. 16.
    T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, S.Y. Cho, N.M. Jokerst, D.R. Smith, Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett. 91(6), 062511 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, L. Wang, Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Appl. Phys. Lett. 92(22), 221101 (2008)CrossRefGoogle Scholar
  18. 18.
    C.M. Bingham, H. Tao, X. Liu, R.D. Averitt, X. Zhang, W.J. Padilla, Planar wallpaper group metamaterials for novel terahertz applications. Opt. Express 16(23), 18565–18575 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Elhawil, J. Stiens, C. De Tandt, W. Ranson, R. Vounckx, Thin-film sensing using circular split-ring resonators at mm-wave frequencies. Appl. Phys. A 103(3), 623–626 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Tao, A.C. Strikwerda, M. Liu, J.P. Mondia, E. Ekmekci, K. Fan, D.L. Kaplan, W.J. Padilla, X. Zhang, R.D. Averitt, F.G. Omenetto, Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett 97(26), 261909 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Withayachumnankul, H. Lin, K. Serita, C.M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, D. Abbott, Sub-diffraction thin-film sensing with planar terahertz metamaterials. Opt. Express 20(3), 3345–3352 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Galoda, G. Singh, Terahertz technology ─ an emerging electromagnetic spectrum, in Proceedings of International Conference on Information and Communication Technology (IICT-2007) (DIT Dehradoon, India, 26–28 July 2007), pp. 482–486Google Scholar
  23. 23.
    S. Galoda, G. Singh, Fighting terrorism with terahertz. IEEE Potential Mag. 26(6), 24–29 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Grade, P. Haydon, D.V. Weide, Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proc. IEEE 95(8), 1583–1591 (2007)CrossRefGoogle Scholar
  25. 25.
    P. Kumar, A.K. Singh, G. Singh, T. Chakravarty, S. Bhooshan, Terahertz technology – a new direction, in IEEE International Symposium on Microwave, Bangalore, India (2006), pp. 195–201Google Scholar
  26. 26.
    S. P. Mickan, X.-C. Zhang, in Terahertz Sensing Technology, ed. by D. L. Woolard, W. R. Loerop, M. S. Shur (Eds), (World Scientific, Singapore, 2003)Google Scholar
  27. 27.
    D.R. Vizard, Millimeter-wave applications: from satellite communications to security systems. Microw. J. 49(7), 22–36 (2006)Google Scholar
  28. 28.
    E.R. Brown, K.A. McIntosh, K.B. Nichols, C.L. Dennis, Photo mixing upto 3.8 THz in low temperature grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995)CrossRefGoogle Scholar
  29. 29.
    S. Verghese, K.A. McIntosh, E.R. Brown, Optical and terahertz power limits in the low temperature GaAs photomixer. Appl. Phys. Lett. 71, 2743–2745 (1997)CrossRefGoogle Scholar
  30. 30.
    R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissnev, H.L. Hastnagel, Spectral characterization of broadband THz antennas by photoconductive mixing; towards optimal antenna design. IEEE Antenna Wirel. Propag. Lett. 4, 85–88 (2005)CrossRefGoogle Scholar
  31. 31.
    I.G. Gregory, W.R. Tribe, B.E. Cole, M.J. Evans, E.H. Linfield, A.G. Davies, M. Missons, Resonant dipole antennas for continuous wave terahertz photomixers. Appl. Phys. Lett. 85, 1622–1624 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Matsuura, M. Tani, K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997)CrossRefGoogle Scholar
  33. 33.
    F.K. Schwering, Millimeter wave antenna. Proc. IEEE 80(1), 92–102 (1992)CrossRefGoogle Scholar
  34. 34.
    T. Seki, N. Honma, K. Nishikawa, K. Tsunekawa, Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on Teflon substrate. IEEE Trans. Microwave Theory Tech. 53(6), 2101–2106 (2005)CrossRefGoogle Scholar
  35. 35.
    D.M. Pozar, Microstrip antennas. Proc. IEEE 80(1), 79–91 (1992)CrossRefGoogle Scholar
  36. 36.
    A.A. Abdelaziz, Bandwidth enhancement of microstrip antenna. Prog. Electromagn. Res. 63, 311–317 (2006)CrossRefGoogle Scholar
  37. 37.
    R. Garg, V.S. Reddy, Edge feeding of microstrip ring antennas. IEEE Trans. Antennas Propag. 51(8), 1941–1946 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Saed, R. Yadla, Microstrip-fed low profile and compact dielectric resonator antenna. Prog. Electromagn. Res 56, 151–162 (2006)CrossRefGoogle Scholar
  39. 39.
    A. Sharma, G. Singh, Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30, 1–7 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Sharma, V.K. Dwivedi, G. Singh, THz rectangular patch microstrip antenna design using photonic crystal as substrate, in Proceedings of Progress in Electromagnetic Research Symposium (PIERS 2008), (Cambridge, USA, 2–6 July 2008), pp. 161–165Google Scholar
  41. 41.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kurner, Short-range ultra-broadband terahertz communications: concept and perspectives. IEEE Antennas Propag. Mag. 49(6), 24–38 (2007)CrossRefGoogle Scholar
  42. 42.
    A. Sharma, G. Singh, Design of single pin shorted three dielectric layered substrates rectangular patch microstrip antenna for communication systems. Prog. Electromag. Res. Lett. 2, 157–165 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Electronic Engineering, QUESTNawabshahPakistan
  2. 2.Department of Computer Systems Engineering, QUESTNawabshahPakistan
  3. 3.Department of Computer and Communication Systems EngineeringUniversiti PutraSerdangMalaysia

Personalised recommendations