Wide-Angle Beam Scanning Antenna at 79 GHz for Short-Range Automotive Radar Applications

  • Muhammad Kamran SaleemEmail author
  • Majeed A. S. Alkanhal
  • Hamsakutty Vettikaladi


An antenna array with beam scanning capability operating in millimeter wave region (79 GHz) for automotive radar applications is presented. The proposed antenna array consists of 17 planar log periodic dipole antennas (PLPDA) and a cylindrical dielectric Luneburg Lens. The Luneburg Lens is utilized to enhance the gain of PLPDA, i.e., from 7.7 dBi to 16 dBi. The proposed antenna array structure is optimized to cover a wide scan angle of 180° in azimuth plane (θ = 90°) with impedance bandwidth of 6 GHz (76.5–82.5 GHz). The realized gain of center feed is found to be 16 dBi whereas it decays to minimum value to 13 dBi for the edge feeds of the 17 element PLPDA array integrated with Luneburg Lens. The crossover between the neighboring feeds in array is maintained to be 3 dBi. A comparison between the simulation and measured results is shown, which are found to be in a good agreement.


Beam scanning Cylindrical Luneburg lens Planar log periodic dipole antenna Short range automotive radar Micro strip feed 


  1. 1.
    R.H. Rasshofer, K. Gresser, Automotive radar and lidar systems for next generation driver assistance functions. Adv. Radio Sci. 3, 205–209 (2005)CrossRefGoogle Scholar
  2. 2.
    S. K. P. Zador, R. Vocas, Final Report-Automotive Collision Avoidance (ACAS) Program, Tech. Rep. DOT HS 809 080, NHTSA, U.S. DOT, Aug. (2000)Google Scholar
  3. 3.
    J.L. Kuo, Y.F. Lu, T.Y. Huang, Y.L. Chang, Y.K. Hsieh, P.J. Peng, H. Wang, 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flipchip CMOS process. IEEE Trans. Microw. Theory Tech. 60(3), 743–756 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Kirino, K. Ogawa, A 76 GHz multi-Layered phased array Antenna using a non-metal contact metamaterial waveguide. IEEE Trans. Antennas Propag. 60(2), 840–853 (2012)CrossRefGoogle Scholar
  5. 5.
    K.A. Zimmerman, D.L. Runyon, Luneburg lens and method of constructing same, U.S. Patent 5 677 796, 14 Oct 1997Google Scholar
  6. 6.
    K. Strohm, H.-L. Bloecher, R. Schneider, J. Wenger, Development of future short range radar technology. IEEE Trans., in European Radar Conference (Paris, France, Oct 2005), pp. 165–168Google Scholar
  7. 7.
    J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, C. Waldschmidt, Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech. 60(3), 845–860 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Schoenlinner, X. Wu, J.P. Ebling, G.V. Eleftheriades, G.M. Rebeiz, Wide-scan spherical-lens antennas for automotive radars. IEEE Trans. Microw. Theory Tech. 50(9), 2166–2175 (2002)CrossRefGoogle Scholar
  9. 9.
    O. Lafond, M. Himdi, H. Merlet, P. Lebars, An active reconfigurable antenna at 60 GHz based on plate inhomogeneous l ens and feeders. IEEE Trans. Antennas Propag. 61(4), 1672–1678 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Hua, X. Wu, N. Yang, W. Wu, Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies. IEEE Trans. Microw. Theory Tech. 61(1), 436–443 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.S. Zhang, W. Hong, A millimeter-wave gain enhanced multi-beam antenna based on a coplanar cylindrical dielectric lens. IEEE Trans. Antennas Propag. 60(7), 3485–3488 (2012)CrossRefGoogle Scholar
  12. 12.
    C.A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, New York, 2012)Google Scholar
  13. 13.
    C. Campbell, I. Traboulay, M. Suthers, H. Kneve, Design of a strip line log periodic dipole antenna. IEEE Trans. Antennas Propag. 25, 718–721 (1977)CrossRefGoogle Scholar
  14. 14.
    R. Carrel, The design of log-periodic dipole antennas, in IRE International Convention Record, vol. 9, (IEEE, New York, USA, 1966), pp. 61–75Google Scholar
  15. 15.
    Ansys HFSS, v14, ANSYS Corporation Software, Pittsburgh, PA, USA, 2014Google Scholar
  16. 16.
    B. Fuchs, L. Le Coq, O. Lafond, S. Rondineau, M. Himdi, Design optimization of multishell Luneburg lenses. IEEE Trans. Antennas Propag. 55(2), 283–289 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Kamran Saleem, H. Vettikaladi, A.S. Majeed, Alkanhal, M. Himdi, Integrated lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications. IEEE Trans. Antennas Propag. 65(99), 2041–2046 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Merlet, P. LeBars, O. Lafond, M. Himdi, Manufacturing method of a dielectric material and its applications to millimeter-waves beam forming antenna systems, U.S. Patent App.14/362,901, 7 Dec 2012Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Muhammad Kamran Saleem
    • 1
    Email author
  • Majeed A. S. Alkanhal
    • 2
  • Hamsakutty Vettikaladi
    • 2
  1. 1.Electrical Engineering DepartmentUniversity of Central PunjabLahorePakistan
  2. 2.Electrical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations