Coplanar-Fed Miniaturized Folded Loop Balanced Antenna for WLAN Applications

  • A. G. Alhaddad
  • R. A. Abd-Alhameed
  • Embarak M. Ibrahim


In this chapter, a novel dual-band balanced antenna fed coplanar waveguide approach for use in WLAN standards is investigated, studied and prototyped. Within this design process, the need of the balanced feed network was eliminated. This is realized by carefully and systematically calculating and studying the influences of the key antenna modified parameters. This effective analysis was done with the aid of two EM simulator tools in order to ensure accuracy and verification of the consequences. Finally, the optimum antenna model was prototyped and verified, in which its results in terms of return loss, power gains, far-field and efficiency were compared with simulated ones.


Coplanar waveguide Loop antenna WLAN Parametric study Dual band 


  1. 1.
    H. Morishita, H. Furuuchi, K. Fujimoto, Performance of balance-fed antenna system for handsets in the vicinity off a human head or hand. IEE Proc. Microwave Antennas Propag. 149, 85–91 (2002)CrossRefGoogle Scholar
  2. 2.
    D. Zhou, R.A. Abd-Alhameed, C.H. See, A.G. Alhaddad, P.S. Excell, Compact wideband balanced antenna for mobile handsets. IET Microwaves Antennas Propag. 4, 600–608 (2010)CrossRefGoogle Scholar
  3. 3.
    J.S. McLean, Balancing networks for symmetric antennas: Part I: Classification and fundamental operation. IEEE Trans. Electromagn. Compat. 44, 503–514 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Ghione, C.U. Naldi, Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling. IEEE Trans. Microwave Theory Tech 35, 260–267 (1987)CrossRefGoogle Scholar
  5. 5.
    C.P. Wen, Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans. Microwave Theory Tech MTT-17, 1087–1090 (1969)CrossRefGoogle Scholar
  6. 6.
    R.L. Smith, J.T. Williams, Coplanar waveguide feed for microstrip patch antennas. Electron. Lett. 28, 2272 (1992)CrossRefGoogle Scholar
  7. 7.
    S.-M. Deng, M.-D. Wu, P. Hsu, Analysis of coplanar waveguide-fed microstrip antennas. IEEE Trans. Antennas Propag. 43, 734–737 (1995)CrossRefGoogle Scholar
  8. 8.
    R.K. Raj, M. Joseph, C.K. Aanandan, K. Vasudevan, P. Mohanan, A new compact printed antenna with coplanar configuration. Antennas Propag. Soc. Int. Symp. IEEE 2A, 442–445 (2005)Google Scholar
  9. 9.
    K. Tilley, X.-D. Wu, K. Chang, Dual frequency coplanar strip dipole antenna. Antennas Propag. Soc. Int. Symp. IEEE 2, 928–931 (1994)Google Scholar
  10. 10.
    Y. Jee, Y.-M. Seo, Triple-band CPW-fed compact monopole antennas for GSM/PCS/DCS/WCDMA applications. Electron. Lett. 45, 446–448 (2009)CrossRefGoogle Scholar
  11. 11.
    M.N. Z.Abidin, Measurement of current distribution on wire antennas, Master of Science Dissertation in Radio Frequency and Microwave Engineering, University of Bradford, September 1993Google Scholar
  12. 12.
    L.L. Libby, Special aspects of balanced shielded loops. Proc. IRE 34, 641–646 (1946)CrossRefGoogle Scholar
  13. 13.
    K.-L. Wong, Compact and Broadband Microstrip Antennas (John Wiley & Sons, Inc., New York, 2002)CrossRefGoogle Scholar
  14. 14.
    R. Garg, P. Bhartia, I. Bahl, A. Ittipihoon, Microstrip Antenna Design Handbook (Artech House, Inc., Boston, 2001)Google Scholar
  15. 15.
    G. Kumar, K.P. Ray, Broadband Microstrip Antenna (Artech House, Inc., Boston, 2003)Google Scholar
  16. 16.
    R.N. Simons, Coplanar Waveguide Circuits, Components, and Systems (John Wiley & sons, New York, 2001)CrossRefGoogle Scholar
  17. 17.
    A. Z. Jakal, New coplanar printed antennas: a family of broadband uniplanar printed antennas in endfire, broadside and omnidirectional forms, and suitable for integration with coplanar waveguide, vol. Ph.D: Bradford, 1997Google Scholar
  18. 18.
    W. Menzel, W. Grabherr, A microstrip patch antenna with coplanar line feed. IEEE Microwave Guid. Wave Lett. 1, 340–342 (1991)CrossRefGoogle Scholar
  19. 19.
    A.G. Alhaddad, R.A. Abd-Alhameed, D. Zhou, C.H. See, P.S. Excell, S.M.R. Jones, Folded loop balanced coplanar antenna for WLAN applications. IEEE Trans. Antennas Propag. 60(10), 4916–4920 (2012)CrossRefGoogle Scholar
  20. 20.
    Computer Simulation Technology Corporation, CST Microwave Studio, Version 5.0, GermanyGoogle Scholar
  21. 21.
    High Frequency Structure Simulator, Version 11, Ansoft Corporation, USAGoogle Scholar
  22. 22.
    R.W. Johnston, J.G. McRory, An improved small antenna radiation-efficiency measurement. IEEE Antenna Propag. Soc. Mag. 40, 40–48 (1998)CrossRefGoogle Scholar
  23. 23.
    H. Choo, R. Rogers, H. Ling, On the wheeler cap measurement of the efficiency of microstrip antennas. IEEE Trans. Antennas Propag. 53, 2328–2332 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. G. Alhaddad
    • 1
  • R. A. Abd-Alhameed
    • 1
  • Embarak M. Ibrahim
    • 2
  1. 1.Faculty of Engineering & Informatics, University of BradfordBradfordUK
  2. 2.College of Electronic TechnologyBani WalidLibya

Personalised recommendations