Compact Wideband Printed MIMO/Diversity Monopole Antenna for GSM/UMTS and LTE Applications

  • Chan H. See
  • Adham Saleh
  • Ali A. Alabdullah
  • Khalid Hameed
  • Raed A. Abd-Alhameed
  • S. M. R. Jones
  • Asmaa H. Majeed


Over the last decade, significant research effort has been devoted to enhance the isolation between multiple-input-multiple-output (MIMO) antenna elements. This has led to offer several solutions, which in terms of band calcifications may be categories as follows: narrow band, broadband and dual/triple band. Services that have been covered by the narrow band solutions include Long Term Evolution (LTE) 700–800 MHz, UMTS and WLAN 2.4, 5.2 and 5.8 GHz. Thus, within this chapter, a low profile printed crescent-shaped monopole MIMO diversity antenna for use in smart mobile devices is proposed. The mutual coupling is significantly mitigated by simply printing an I-shaped conductor over the ground place which is symmetrically placed between the two antenna elements. The proposed MIMO antenna exhibits a wideband frequency range from 1.8 to 2.6 GHz, equivalent to bandwidth of 54.5%, while simultaneously achieving an isolation of −14 dB. Moreover, the proposed antenna demonstrates nearly omnidirectional patters, acceptable power gain, good envelope correlation and channel capacity loss.


MIMO Monopole antenna Mutual coupling Port-to-port isolation Head/hand models 


  1. 1.
    L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, L. Gyongyosi, Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE 100, 1853–1888 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Hanzo, M. El-Hajjar, O. Alamri, Near-capacity wireless transceivers and cooperative communications in the MIMO era: evolution of standards, waveform design, and future perspectives. Proc. IEEE 99(8), 1343–1385 (2011)CrossRefGoogle Scholar
  3. 3.
    Z. Ying, Antennas in cellular phones for mobile communications. Proc. IEEE 100(7), 2286–2296 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Shin, J.H. Lee, Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 49, 2636–2647 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J. Wallace, M. Jensen, A. Swindlehurst, B. Jeffs, Experimental characterization of the MIMO wireless channel: data acquisition and analysis. IEEE Trans. Wirel. Commun. 2(2), 335–343 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Lee, Y.-K. Hong, S. Bae, G.S. Abo, W.-M. Seong, G.-H. Kim, Miniature long-term evolution (LTE) MIMO ferrite antenna. IEEE Antennas Wirel. Propag. Lett. 10, 2364–2367 (2011)Google Scholar
  7. 7.
    Y.S. Shin, S.O. Park, A monopole antenna with a magneto-dielectric material and its MIMO applications for 700MHz LTE-band. Microw. Opt. Technol. Lett. 52, 603–606 (2010)Google Scholar
  8. 8.
    M.S. Sharawi, S.S. Iqbal, Y.S. Faouri, An 800 MHz 2 X 1 compact MIMO antenna system for LTE handsets. IEEE Trans. Antennas Propag. 59(8), 3128–3131 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Li, Z. Du, M. Takahashi, K. Saito, K. Ito, Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 60(4), 473–481 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Minz, R. Garg, Reduction of mutual coupling between closely spaced PIFAs. Electron. Lett. 46(6), 392–394 (2010)CrossRefGoogle Scholar
  11. 11.
    S.-W. Su, C.-T. Lee, F.-S. Chang, Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Trans. Antennas Propag. 60(2), 456–463 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Li, J. Xiong, S. He, A compact planar MIMO antenna system of four elements with similar radiation characteristic and isolation structure. IEEE Antennas Wirel. Propag. Lett. 8, 1107–1110 (2009)CrossRefGoogle Scholar
  13. 13.
    S.-C. Chen, Y.-S. Wang, S.-J. Chung, A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Trans. Antennas Propag. 56(12), 3650–3658 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Krairiksh, P. Keowsawat, C. Phongcharoenpanich, Two-probe excited circular ring antenna for MIMO application. Prog. Electromagn. Res. 97, 417–431 (2009)CrossRefGoogle Scholar
  15. 15.
    J. OuYang, F. Yang, Z.M. Wang, Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antennas Wirel. Propag. Lett. 10, 310–313 (2011)CrossRefGoogle Scholar
  16. 16.
    A.R. Mallahzadeh, S. Es'haghi, A. Alipour, Design of an E Shaped MIMO antenna using IWO algorithm for wireless application at 5.8 GHz. Prog. Electromagn. Res. 97, 417–431 (2009)CrossRefGoogle Scholar
  17. 17.
    X. Tang, K. Mouthaan, J.C. Coetzee, Tunable decoupling and matching network for diversity enhancement of closely spaced antennas. IEEE Antennas Wirel. Propag. Lett. 11, 268–271 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Zhou, R. Li, G. Jin, M.M. Tentzeris, A compact broadband MIMO antenna for mobile handset applications. Microw. Opt. Technol. Lett. 53(12), 2773–2776 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Zhang, P. Zetterberg, S. He, Printed MIMO antenna system of four closely-spaced elements with large bandwidth and high isolation. Electron. Lett. 46(15), 1052–1053 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Kang, Z. Du, K. Gong, Compact broadband printed slot-monopole-hybrid diversity antenna for mobile terminal. IEEE Antennas Wirel. Propag. Lett. 10, 159–162 (2011)CrossRefGoogle Scholar
  21. 21.
    C.H. See, R.A. Abd-Alhameed, Z.Z. Abidin, N.J. McEwan, P.S. Excell, Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications. IEEE Trans. Antennas Propag. 60(4), 2028–2035 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, Z. Du, K. Gong, Z. Feng, A novel dual-band printed diversity antenna for mobile terminals. IEEE Trans. Antenna Propag. 55, 2088–2096 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Zhang, B.K. Lau, Y. Tan, Z. Ying, S. He, Mutual coupling reduction of two PIFA with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Trans. Antennas Propag. 60(3), 1521–1531 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Addaci, A. Diallo, C. Luxey, P.L. Thuc, R. Staraj, Dual-band WLAN diversity antenna-system with high port-to-port isolation. IEEE Antennas Wirel. Propag. Lett. 11, 244–247 (2012)CrossRefGoogle Scholar
  25. 25.
    X. Zhou, X. Quan, R. Li, A dual-broadband MIMO antenna system for GSM/UMTS/LTE and WLAN handsets. IEEE Antennas Wirel. Propag. Lett. 11, 551–514 (2012)CrossRefGoogle Scholar
  26. 26.
    Q. Rao, K. Wilson, Design, modeling, and evaluation of a multiband MIMO/diversity antenna system for small wireless mobile terminals. IEEE Trans. Compon. Packag. Manuf. Technol. 1(3), 410–419 (2011)CrossRefGoogle Scholar
  27. 27.
    C.H. See, R.A. Abd-Alhameed, N.J. McEwan, S.M.R. Jones, R. Asif, P.S. Excell, Design of a Printed MIMO/diversity monopole antenna for future generation handheld devices. Int. J. RF Microwave Comput Aided Eng. 24(3), 349–359 (2014)CrossRefGoogle Scholar
  28. 28.
    C.H. See, R.A. Abd-Alhameed, D. Zhou, T.H. Lee, P.S. Excell, A crescent-shaped multiband planar monopole antenna for mobile wireless applications. IEEE Antenna Wirel. Propag. Lett. 9, 152–155 (2010)CrossRefGoogle Scholar
  29. 29.
    HFSS version 14, High frequency structure simulator web site, 2013 [Online]. Available:
  30. 30.
    S. Blance, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39(9), 705–707 (2003)CrossRefGoogle Scholar
  31. 31.
    D. Zhou, R.A. Abd-Alhameed, C.H. See, A.G. Alhaddad, P.S. Excell, A compact wideband balanced antenna for mobile handsets. IET Microwaves Antennas Propag. 4, 600–608 (2010)CrossRefGoogle Scholar
  32. 32.
    IEEE, Std 1528TM-2003, IEEE Recommended Practice for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques (IEEE, New York, 2003)Google Scholar
  33. 33.
    M.A. Ebrahimi-Ganjeh, Interaction of dual band helical and PIFA handset antennas with human head and hand. Prog. Electromagn. Res. 77, 225–242 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Chan H. See
    • 1
  • Adham Saleh
    • 2
  • Ali A. Alabdullah
    • 2
  • Khalid Hameed
    • 2
  • Raed A. Abd-Alhameed
    • 2
  • S. M. R. Jones
    • 2
  • Asmaa H. Majeed
    • 3
  1. 1.School of Engineering, University of BoltonBoltonUK
  2. 2.School of Electrical Engineering and Computer Science, University of BradfordBradfordUK
  3. 3.College of Engineering, University of Al-NahrainBaghdadIraq

Personalised recommendations