Fundamentals of Antenna Design, Technologies and Applications

  • Issa Elfergani
  • Abubakar Sadiq Hussaini
  • Jonathan Rodriguez


This chapter will deal with the concepts, requirements, challenges and the evolution of antenna technologies, driven by subsequent releases of mobile generations from legacy 3G (Third Generation Mobile Systems) towards the latest release in LTE-A in particular. This chapter gives a brief overview of the latest techniques used to achieve several antenna designs for different applications. We also within this chapter provide concrete and practical examples of widely adopted multi-band, wideband, MIMO, balanced and mm-wave antenna technologies for current 3G and 4G mobile systems as well as for the forthcoming 5G era. Issues including design considerations, engineering design, measurement setup and methodology and practical applications are all covered in depth.


Multi-band antenna Wideband antenna MIMO antenna Balanced antenna mm-wave antenna 



This work is carried out under the grant of the Fundacão para a Ciência e a Tecnologia (FCT - Portugal), with the reference number: SFRH / BPD / 95110 / 2013 and funded by national funds through FCT/MEC (PEst-OE/EEI/LA0008/2013 - UID/EEA/50008/2013).


  1. 1.
    V.-A. Nguyel, R.-A. Bhatti, S.-O. Park, A simple PIFA-based tunable internal antenna for personal communication handsets. IEEE Antennas Wireless Propag. Lett. 7, 130–133 (2008)CrossRefGoogle Scholar
  2. 2.
    N. Behbad, K. Sarabandi, Dual-band reconfigurable antenna with a very wide tenability range. IEEE Trans. Antennas Propag. 54(2), 409–416 (2006)CrossRefGoogle Scholar
  3. 3.
    G.F. Khodaei, J. Nourinia, C. Ghobadi, A practical miniaturized U-slot patch antenna with enhanced bandwidth. Prog. Electromagn. Res. B 3, 47–62 (2008)CrossRefGoogle Scholar
  4. 4.
    Y.F. Cao, S.W. Cheung, T.I. Yuk, A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Trans. Antennas Propag. 63(3), 952–958 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    B. B. Chowdhury, R. De, M. Bhowmik. A novel design for circular patch fractal antenna for multiband applications. 2016 3rd international conference on signal processing and integrated networks (SPIN), Noida, India, 11–12 Feb 2016, pp. 1–5Google Scholar
  6. 6.
    K.-C. Lin, C.-H. Lin, Y.-C. Lin, Simple printed multiband antenna with novel parasitic-element design for multistandard mobile phone applications. IEEE Trans. Antennas Propag. 61(1), 488–491 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Rajkumar, K.U. Kiran, A compact metamaterial multiband antenna for WLAN/WiMAX/ITUband applications. AEÜ Int J Electron Commun. 70, 599–604 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Wakrim, S. Ibnyaich, M.M. Hassani, Multiband operation and performance enhancement of the PIFA antenna by using particle swarm optimization and overlapping method. Hindawi Publishing Corporation Applied Computational Intelligence and Software Computing 2017, 3481709, 8 pages (2017)Google Scholar
  9. 9.
    A. Sharma, R.K. Gangwar, Triple-band dual-polarized hybrid cylindrical dielectric resonator antenna with hybrid modes excitation. Prog. Electromagn. Res. C 67, 97–105 (2016)CrossRefGoogle Scholar
  10. 10.
    B.K. Mehri, R. Pejman, S. Vahid, M.M. Fakharian, Small square reconfigurable antenna with switchable single/tri-band functions. Radioengineering 25(1), 40–46 (2016)CrossRefGoogle Scholar
  11. 11.
    N.M. Sahar, M.T. Islam, N. Misran, A reconfigurable multiband antenna for RFID and GPS applications. Elektronika Ir Elektrotechnika, ISSN 1392-1215 21(6), 44–50 (2015)Google Scholar
  12. 12.
    I.T.E. Elfergani, T. Sadeghpour, R.A. Abd-Alhameed, A.S. Hussaini, J.M. Noras, S.M.R. Jones, J. Rodriguez, Reconfigurable antenna design for mobile handsets including harmonic radiation measurements. IET Microwaves Antennas Propag. 6(9), 990–999 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.S. Yu, D.H. Seo, S.G. Jeon, J.H. Cho, Design of an internal DTV antenna for portable multimedia player. Proceedings of Asia-Pacific Microwave Conference 2006, 1601–1603 (2006)Google Scholar
  14. 14.
    H.K. Kan, R.B. Waterhouse, Shorted spiral-like printed antennas. IEEE Trans. Antennas Propag. 50, 396–397 (2002)CrossRefGoogle Scholar
  15. 15.
    M.C. Liang, K.C. Huang, M.L. Lo, A low frequency spiral C-patch antenna design for automotive application, in 2004 IEEE Antennas Propag. Soc. Int. Symp. Dig., vol. 1, pp. 1070–1073, Monterey, CA, USAGoogle Scholar
  16. 16.
    H. C. Tung, K.L. Wong, Dual-band inverted-L monopole antenna for GSM/DCS mobile phone, in 2002 IEEE Antennas Propag. Soc. Int. Symp. Dig., vol. 3, pp. 30–33, San Antonio, Texas, USAGoogle Scholar
  17. 17.
    F.S. Chang, K.L. Wong, Folded meandered-patch monopole antenna for low-profile GSM/DCS. Microw. Opt. Technol. Lett. 34, 84–86 (2002)CrossRefGoogle Scholar
  18. 18.
    N.P. Agrawall, G. Kumar, K.P. Ray, Wide-band planar monopole antennas. IEEE Trans. Antennas Propag. 46, 294–295 (1998)CrossRefGoogle Scholar
  19. 19.
    E. Lee, P.S. Hall, P. Gardner, Compact wideband planar monopole antenna. Electron. Lett. 50, 2157–2158 (1999)CrossRefGoogle Scholar
  20. 20.
    A.H. Kusuma, A.-F. Sheta, I.M. Elshafiey, Z. Siddiqui, M.A.S. Alkanhal, S. Aldosari, S.A. Alshebeili, A new low SAR antenna structure for wireless handset applications. Prog. Electromagn. Res. 112, 23–40 (2011)CrossRefGoogle Scholar
  21. 21.
    K.L. Wong, T.W. Kang, GSM850/900/1800/1900/UMTS printed monopole antenna for mobile phone application. Microw. Opt. Technol. Lett. 50, 3192–3198 (2008)CrossRefGoogle Scholar
  22. 22.
    D.B. Lin, I.T. Tang, M.Z. Hong, A compact quad-band PIFA by tuning the defected ground structure for mobile phones. Prog. Electromagn. Res. B 24, 173–189 (2010)CrossRefGoogle Scholar
  23. 23.
    C.H. Wu, K.L. Wong, Internal hybrid loop/monopole slot antenna for quad-band operation in the mobile phone. Microw. Opt. Technol. Lett. 50, 795–801 (2008)CrossRefGoogle Scholar
  24. 24.
    J.Y. Sze, Y.F. Wu, A compact planar hexa-band internal antenna for mobile phone. Prog. Electromagn. Res. 107, 413–425 (2010)CrossRefGoogle Scholar
  25. 25.
    W.J. Liao, S.H. Chang, L.K. Li, A compact planar multiband antenna for integrated mobile devices. Prog. Electromagn. Res. 109, 1–16 (2010)CrossRefGoogle Scholar
  26. 26.
    J.H. Chen, Y.L. Ban, H.M. Yuan, Y.J. Wu, Printed coupled-fed PIFA for seven-band GSM/UMTS/LTE WWAN mobile phone. J. Electromagnet. Wave. 26(2–3), 390–401 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.-L. Ban, J.-H. Chen, L.-J. Ying, J.L.-W. Li, Y.-J. Wu, Ultrawideband antenna for LTE/GSM/UMTS wireless USB dongle applications. IEEE Antennas Wireless Propag. Lett. 11, 403–406 (2012)CrossRefGoogle Scholar
  28. 28.
    Z. Chen, Y.-L. Ban, J.-H. Chen, J.L.-W. Li, Y.-J. Wu, Bandwidth Enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure. Prog. Electromagn. Res. 129, 469–483 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Naser-Moghadasi, Z. Mansouri, S. Sharma, F.B. Zarrabi, B.S. Virdee, Low SAR PIFA antenna for wideband applications. IETE J. Res. 62(5), 564–570 (2016)CrossRefGoogle Scholar
  30. 30.
    P.K. Bharti, H.S. Singh, G.K. Pandey, M.K. Meshram, Thin profile wideband printed monopole antenna for slim mobile handsets applications. Prog. Electromagn. Res. C 57, 149–158 (2015)CrossRefGoogle Scholar
  31. 31.
    C.-H. Wu, K.-L. Wong, Ultrawideband PIFA with a capacitive feed for penta-band folder-type mobile phone antenna. IEEE Trans. Antennas Propag. 57(8), 2461–2464 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Kim, W. Lee, Y.J. Yoon, Wideband antenna for mobile terminals using a coupled feeding structure. IEEE International Symposium on Antennas and Propagation (APSURSI), 3–8 Jul 2011, pp. 1–4Google Scholar
  33. 33.
    Federal Communications Commission, FCC Report and Order on Ultra Wideband Technology, Federal Communications Commission, Washington, DC, USA, 2002Google Scholar
  34. 34.
    A.M. Abbosh, M.E. Bialkowski, Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE Trans. Antennas Propag. AP-56(1), 17–23 (2008)CrossRefGoogle Scholar
  35. 35.
    A.T. Mobashsher, A. Abbosh, Wideband unidirectional antenna for head imaging system, IEEE Antennas and Propagation Society International Symposium, Orlando, Florida, USA, 7–13 Jul 2013, pp. 674–675Google Scholar
  36. 36.
    N.C. Azenui, H.Y.D. Yang, A printed crescent patch antenna for ultrawideband applications. IEEE Antennas Wireless Propag. Lett. 6, 113–116 (2007)CrossRefGoogle Scholar
  37. 37.
    X.-L. Liang, S.-S. Zhong, W. Wang, Compact elliptical monopole antenna with impedance bandwidth in excess of 21:1. IEEE Trans. Antennas Propag. 55(11), 3082–3085 (2007)CrossRefGoogle Scholar
  38. 38.
    X.-R. Yan, S.-S. Zhong, G.-Y. Wang, Compact printed monopole antenna with 2 4: 1 impedance bandwidth. Electron. Lett. 44(2), 73–74 (2008)CrossRefGoogle Scholar
  39. 39.
    X.-L. Liang, S.-S. Zhong, W. Wang, Tapered CPW -fed printed monopole antenna. Microw. Opt. Technol. Lett. 48(7), 1411–1413 (2006)CrossRefGoogle Scholar
  40. 40.
    Z. Wang, Y. Yin, J. Wu, R. Lian, Printed monopole. IEEE Antennas Wireless Propag. Lett. 15, 16–19 (2016)Google Scholar
  41. 41.
    Y. Wang, G. Fang, S. Hai, Y. Ji, S. Ye, X. Zhang, A novel UWB TEM horn antenna with a microstrip-type feed. Int. J. Antennas Propag. 2015, 182140, 6 (2015)Google Scholar
  42. 42.
    A. Amini, H. Oraizi, M.A. Chaychizadeh, Miniaturized UWB log-periodic square fractal antenna. IEEE Antenna Wireless Propag. Lett. 14, 1322–1325 (2015)CrossRefGoogle Scholar
  43. 43.
    R.S. Brar, S. Singhal, A.K. Singh, Rotated quadrilateral dipole UWB antenna for wireless communication. Prog. Electromagn. Res. C 66, 117–128 (2016)CrossRefGoogle Scholar
  44. 44.
    M.M. Islam, M.R.I. Faruque, M.T. Islam, A compact disc-shaped printed antenna using parasitic element on ground plane for super wideband applications. ACES J. 31(8), 960–969 (2016)Google Scholar
  45. 45.
    S.A. Naghdehforushha, H. Oraizi, F.H. Kashani, A.J. Deel, Design of a rectangular metallic monopole antenna with protruding normal plates for applications in UWB communication. Progr. Electromagn. Res. C 51, 161–167 (2014)CrossRefGoogle Scholar
  46. 46.
    K.-L. Wong, T.-C. Tseng, P.-L. Teng, Low-profile ultra-wideband antenna for mobile phone applications. Microw. Opt. Technol. Lett. 43(1), 7–9 (2004)CrossRefGoogle Scholar
  47. 47.
    S. Jegadeesan, Z. Mansouri, Ultra wideband PIFA antenna with supporting GSM and WiMAX for mobile phone applications, Fifth International Conference on Advanced Computing & Communication Technologies, 21–22 Feb 2015, pp. 1–6Google Scholar
  48. 48.
    R. Gomez-Villanueva, R. Linares-y-Miranda, J.A. Tirado-Mendez, H. Jardon-Aguilar, Ultra-wideband planar inverted-F antenna (PIFA) for mobile phone frequencies and ultra-wideband applications. Prog. Electromagn. Res. C 43, 109–120 (2013)CrossRefGoogle Scholar
  49. 49.
    N.G. do Serro UWB antenna for portable devices, IEEE Antennas and Propagation Society International Symposium, 5–11 Jul 2008, pp. 1–6Google Scholar
  50. 50.
    K.-L. Wong, S.-L. Chien, Wide-band cylindrical monopole antenna for mobile phone. IEEE Trans. Antennas Propag. 53(8), 1–3 (2005)CrossRefGoogle Scholar
  51. 51.
    Y.-T. Liu, S.-W. Su, An internal wideband monopole antenna for UMTS/WLAN dualmode mobile phone. Microw. Opt. Technol. Lett. 50(7), 1741–1744 (2008)CrossRefGoogle Scholar
  52. 52.
    C.H. See, R.A. Abd-Alhameed, F. Elmegri, D. Zhou, J.M. Noras, N.J. McEwan, S.M.R. Jones, P.S. Excell, Planar monopole antennas for new generation mobile and lower band ultra-wide band applications. IET Microw. Antennas Propag. 6(11), 1207–1214 (2012)CrossRefGoogle Scholar
  53. 53.
    W.-S. Chen, P.-Y. Chang, B.-Y. Lee, H.-T. Chen , and J.-S. Kuo, A compact microstrip-fed slot antenna with a dual-band notched function for WiMAX Operation, 2010 IEEE Antennas and Propagation Society International Symposium, 11–17 Jul 2010, pp. 1–4Google Scholar
  54. 54.
    W.-S. Chen, K.-Y. Ku, Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation. IEEE Trans. Antennas Propag. 56(4), 1163–1169 (2008)CrossRefGoogle Scholar
  55. 55.
    Y. Xiao, Z.-Y. Wang, J. Li, Z.-L. Yuan, A.K. Qin, Two-step bevelled UWB printed monopole antenna with band notch. Int. J. Antennas Propag, 11 pages (2014, 173704, 2014)Google Scholar
  56. 56.
    T. Mandal, S. Das, Design of a microstrip fed printed monopole antenna for bluetooth and UWB applications with WLAN notch band characteristics. Int. J. RF Microw. C. E. 25(1), 66–74 (2015)CrossRefGoogle Scholar
  57. 57.
    J. Xu, D.-Y. Shen, G.-T. Wang, X.-H. Zhang, X.-P. Zhang, K. Wu, A small UWB antenna with dual band-notched characteristics. Int. J. Antennas Propag. 2012, 656858, 7 pages (2012)Google Scholar
  58. 58.
    S.-F. Niu, G.-P. Gao, M. Li, Y.-S. Hu, B.-N. Li, Design of a novel elliptical monopole UWB antenna with dual band-notched function. Microw. Opt. Technol. Lett. 52(6), 1306–1309 (2010)CrossRefGoogle Scholar
  59. 59.
    Xu Chen, Feng Xu, and Xu Tan “ Design of a compact UWB antenna with triple notched bands using nonuniform width slots” J. Sens. Volume 2017, 7673168, 9 pages2017Google Scholar
  60. 60.
    A. Abdollahvand, A. Pirhadi, M.R. Hosseinnezhad, H. Ebrahimian, A compact UWB printed monopole antenna with triple-band notched characteristics. ACES J. 30(4), 374–380 (2015)Google Scholar
  61. 61.
    A. Paulraj, D. Gore, R. Nabar, H. Bölcskei, An overview of MIMO communications – a key to gigabit wireless. Proc. IEEE 92, 198–218 (2004)CrossRefGoogle Scholar
  62. 62.
    R.D. Murch, K.B. Letaief, Antenna systems for broadband wireless access. IEEE Commun. Mag. 40(4), 76–83 (2002)CrossRefGoogle Scholar
  63. 63.
    G. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell. Labs. Tech. J. 1(2), 41–59 (1996)CrossRefGoogle Scholar
  64. 64.
    J. Wallace, M. Jensen, A. Swindlehurst, B. Jeffs, Experimental characterization of the MIMO wireless channel: Data acquisition and analysis. IEEE Trans. Wirel. Commun. 2(2), 335–343 (2003)CrossRefGoogle Scholar
  65. 65.
    G.J. Foschini, M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6(3), 311–335 (1998)CrossRefGoogle Scholar
  66. 66.
    Y. Gao, X. Chen, Z. Ying, C. Parini, Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal. IEEE Trans. Antennas Propag. 55(12), 3433–3441 (2007)CrossRefGoogle Scholar
  67. 67.
    H. Chih-Chun, L. Ken-Huang, S. Hsin-Lung, L. Hung-Hsuan, and W. Chin-Yih, Design of MIMO antennas with strong isolation for portable applications, in Antennas and Propagation Society International Symposium, 2009. APSURSI '09. IEEE, 2009, pp. 1–4Google Scholar
  68. 68.
    T. Svantesson, On the capacity and correlation of multi antenna systems employing multiple polarizations. Proc. IEEE Antenn. Propag. Symp. 3, 202205 (2002)Google Scholar
  69. 69.
    A.A. Abouda, S.G. Häggman, Effect of mutual coupling capacity of MIMO wireless channels in high SNR scenario, Progress In Electromagnetics Research, PIER 65, 2006, pp. 27–40Google Scholar
  70. 70.
    L. Zhao, L.K. Yeung, K.-L. Wu, A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals. IEEE Trans. Antennas Propag. 62(5), 2767–2776 (2014)CrossRefGoogle Scholar
  71. 71.
    W.-W. Lee, B. Jang, 2x2 Mimo antenna system with different antenna types for mobile terminals. Microw. Opt. Technol. Lett. 58(6), 1337–1340 (2016)CrossRefGoogle Scholar
  72. 72.
    X. Zhao, Y. Lee, J. Choi, Design of a compact MIMO antenna using coupled feed for LTE mobile applications. Int. J. Antenn. Propag. 2013, 837643, 8 pagesGoogle Scholar
  73. 73.
    S. Yoo, S. Kahng, S.-G. Mok, G. Jang Compact MIMO antenna of the open-loop and meandered-line 1-layer radiators with improved isolation, Proceedings of the IEEE International Symposium on Antennas and Propagation, 8–14 Jul 2012, pp. 1–2Google Scholar
  74. 74.
    L. Malviya, R.K. Panigrahi, M.V. Kartikeyan, A 2 × 2 Dual-band MIMO antenna with polarization diversity for wireless applications. Prog. Electromagn. Res. C 61, 91–103 (2016)CrossRefGoogle Scholar
  75. 75.
    M. ElHalaoui, A. Kaabal, H. Asselman, S. Ahyoub, A. Asselman Dual band PIFA for WLAN and WiMAX systems for mobile handsets, The 9th international conference interdisciplinary in Engineering, Tirgu-Mures, Romania. 8–9 Oct 2015, pp. 1–6Google Scholar
  76. 76.
    H.S. Wong, S. Kibria, M.T. Islam, J.S. Mandeep, N. Misran, Quad band handset antenna for LTE MIMO and WLAN application. Int. J. Antenn. Propag. 2014, 341574, 7 pages (2014)Google Scholar
  77. 77.
    J.-H. Chou , H.-J. Li , D.-B. Lin, C.-Y. Wu, A Novel LTE MIMO antenna with decoupling element for mobile phone application, 2014 International Symposium on Electromagnetic Compatibility, Tokyo, 12–16 May 2014, pp. 1–4Google Scholar
  78. 78.
    J.-S. Sun, H.-S. Fang, P.-Y. Lin, C.-S. Chuang, Triple-band MIMO antenna for mobile wireless applications. IEEE Antennas Wireless Propag. Lett. 15, 500–503 (2016)CrossRefGoogle Scholar
  79. 79.
    Q. Fang, D. Mi, Y. Yin, A tri-band MIMO antenna for WLAN/WiMAX application. Prog. Electromagn. Res. Lett. 55, 75–80 (2015)CrossRefGoogle Scholar
  80. 80.
    A. Toktas, A. Akdagli, Wideband MIMO antenna with enhanced isolation for LTE, WiMAX and WLAN mobile handsets. Electron. Lett. 50(10), 723–724 (2014)CrossRefGoogle Scholar
  81. 81.
    X.-X. Xia, Q.-X. Chu, J.-F. Li, Design of a compact wideband MIMO antenna for mobile terminals. Prog. Electromagn. Res. C 41, 163–174 (2013)CrossRefGoogle Scholar
  82. 82.
    P. Gao, S. He, A compact UWB and bluetooth slot antenna for MIMO/diversity applications. ETRI J. 36(2), 309–312 (2014)CrossRefGoogle Scholar
  83. 83.
    R.A. Abd-Alhameed, P.S. Excell, R.A.K. Khalil, J. Mustafa, SAR and radiation performance of balanced and unbalanced mobile antennas using a hybrid computational electromagnetics formulation. IEE Proceedings-Science, Measurement and Technology special issue on Computational Electromagnetics 151, 440–444 (2004)CrossRefGoogle Scholar
  84. 84.
    S. Kingsley, Advances in handset antenna design, RF Design, May 2005Google Scholar
  85. 85.
    K. Ogawa, H. Iwai, Y. Koyanagi, Balance-fed planar built-in antenna. IEEE Electron. Lett. 37, 476–478 (2001)CrossRefGoogle Scholar
  86. 86.
    B. S. Collins, S. P. Kingsley, J. M. Ide, S. A. Saario, R. W. Schlub, and S. G. O'Keefe, A multi-band hybrid balanced antenna, IEEE International Workshop, Antenna Technology Small Antennas and Novel Metamaterials, 2006, pp. 100–103Google Scholar
  87. 87.
    W.-S. Lee, H.-S. Tae, O. Kyoung-Sub, J.-W. Yu, A balanced-fed dual inverted-F antenna with reduced human body effects. Int. J. Antennas Propag. 2013, 814375, 5 pages (2013)Google Scholar
  88. 88.
    A. Iftikhar, M.M. Masud, M.S. Khan, Radiation performance and specific absorption rate (SAR) analysis of a compact dual band balanced antenna, The IEEE International Conference on Electro/Information Technology (EIT), 21–23 May 2015, pp. 1–4Google Scholar
  89. 89.
    W.-J. Lu, G.-M. Liu, K.F. Tong, H.-B. Zhu, Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications. IEEE Trans. Antennas Propag. 62(5), 2860–2865 (2014)CrossRefGoogle Scholar
  90. 90.
    A.G. Alhaddad, R.A. Abd-Alhameed, D. Zhou, C.H. See, I.T.E. Elfergani, P.S. Excell, Low profile dual-band-balanced handset antenna with dual-arm structure for WLAN application. IET Microw. Antennas Propag. 5(9), 1045–1053 (2011)CrossRefGoogle Scholar
  91. 91.
    M. Ali Babar Abbasi, M. Rizwan, H. Zahra, S. Shahid, W.-H. Yeh Wideband balanced antenna with open-end loop for handset applications, Proceedings of ISAP 2014, Kaohsiung, Taiwan, 2–5 Dec 2014, pp. 1–2Google Scholar
  92. 92.
    A. R. Bayat, R. Mirzakhani, A parametric study and design of the Balanced Antipodal Vivaldi Antenna (BAVA), PIERS Proceedings, Moscow, Russia, 19–23 August 2012, pp. 1–5Google Scholar
  93. 93.
    S. Lin, J. Wang, Y. Deng, G. Zhang, A new compact ultra-wideband balun for printed balanced antennas. J. Electromagnet. Waves 29(12), 1570–1579 (2015)CrossRefGoogle Scholar
  94. 94.
    A.I. Sulyman, A.T. Nassar, M.K. Samimi, et al., Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52, 78–86 (2014)CrossRefGoogle Scholar
  95. 95.
    Wong, H., K. B. Ng, C. H. Chan, K. M. Luk, Printed antennas for millimeter wave application, International Workshop on Antenna Tech. 2013, pp. 411–414Google Scholar
  96. 96.
    K.S. Chin, H.T. Chang, J.A. Liu, et al., 28-GHz patch antenna arrays with PCB and LTCC substrates. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference 1, 355–358 (2011)Google Scholar
  97. 97.
    K.F. Tong, K. Li, T. Matsui, Performance of millimeter-wave coplanar patch antennas on low-k materials. PIERS Online 1(1), 46–47 (2005)CrossRefGoogle Scholar
  98. 98.
    D. Wang, H. Wong, K. B. Ng, and C. H. Chan, Wideband shorted higher-order mode millimeter- wave patch antenna, IEEE Antennas and Propagation Society International Symposium, 5–6,2012Google Scholar
  99. 99.
    C.A. Balanis, Antenna theory: Analysis and design (Wiley-Interscience, New Jersey, 2005); 8. M. H. Jamaluddin, R. Gillard, R. Sauleau, et al., A dielectric resonator antenna (DRA) reecarray, Proc. European Microwave Conference, 25–28, 2009Google Scholar
  100. 100.
    S.-K. Yong, P. Xia, A. Valdes-Garcia, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice (Wiley, Chichester, 2011)Google Scholar
  101. 101.
    S. Nie, G.R. MacCartney, S. Sun, T.S. Rappaport, 28 GHz and 73 GHz signal outage study for millimetre wave cellular and backhaul communications. In Proceedings of 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014, pp. 4856–4861Google Scholar
  102. 102.
    Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson, U. Madhow, B.Y. Zhao, H. Zheng, Demystifying 60 GHz outdoor picocells. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HA, USA, 7–11 September 2014, pp. 5–16Google Scholar
  103. 103.
    T.S. Rappaport, R. Mayzus, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  104. 104.
    P.A. Watson, Propagation factors in millimetre-wave radio-system design. Electron. Power 23, 569 (1977)CrossRefGoogle Scholar
  105. 105.
    Millimeter-Wave (MMW) radio transmission: Atmospheric propagation, link budget and system availability, Light Pointe White Paper Series, 2010Google Scholar
  106. 106.
    S. Hur et al., Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61(10), 4391–4403 (2013)CrossRefGoogle Scholar
  107. 107.
    T. Bai, R. Vaze, R.W. Heath, Analysis of blockage effects on urban cellular networks. IEEE Trans. Wirel. Commun. 13(9), 5070–5083 (2014)CrossRefGoogle Scholar
  108. 108.
    K.M. Morshed, K.P. Esselle, M. Heimlich Dielectric loaded planar inverted-F antenna for millimeter-wave 5G hand held devices, 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, , 10–15 Apr 2016, pp. 1–3Google Scholar
  109. 109.
    M. Li, K.-M. Luk, Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Trans. Antennas Propag. 62(6), 1–7 (2014)CrossRefGoogle Scholar
  110. 110.
    H. Aliakbari, A. Abdipour, R. Mirzavand, A. Costanzo, P. Mousavi, A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication, 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 Apr 2016, pp. 1–5Google Scholar
  111. 111.
    N. Ashraf, O.M. Haraz, M.M. Mahmoud Ali, M.A. Ashraf, S.A.S. Alshebili, Optimized broadband and dual-band printed slot antennas for futuremillimeter wave mobile communication. Int. J. Electron. Commun. (AEÜ) 70, 257–264 (2016)CrossRefGoogle Scholar
  112. 112.
    A. Dadgarpour, B. Zarghooni, B.S. Virdee, T.A. Denidni, Millimeter-wave high-gain SIW end-fire bow-tie antenna. IEEE Trans. Antennas Propag. 63(5), 2337–2342 (2015)CrossRefGoogle Scholar
  113. 113.
    S.F. Jilani, A. Alomainy, Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications, 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 Apr 2016, pp. 1–3Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Issa Elfergani
    • 1
  • Abubakar Sadiq Hussaini
    • 1
    • 2
  • Jonathan Rodriguez
    • 1
    • 3
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.School of Information Technology & computing, American University of NigeriaYolaNigeria
  3. 3.University of South WalesPontypriddUK

Personalised recommendations