Skip to main content

Mutual Forces Acting on Chains of Particles

  • Chapter
  • First Online:
Analysis and Simulation of Electrical and Computer Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 452))

Abstract

This paper describes a method to determine mutual forces acting between dielectric particles, which form chains. The Maxwell stress tensor method together with finite element method are used. It is shown that particles placed in inhomogeneous field, because of dielectrophoretic forces acting between them, have a tendency to collect one by one giving in effect even long particles chains. In this article, Maxwell stress tensors are integrated over particle surfaces to give total mutual forces interacting between molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahaworasilpa, T.L., Goster, H.G.L., George, E.P.: Forces on biological cells due to applied alternating (AC) electric fields. 1. Dielectrophoresis. Biochim. Biophys. Acta Biomembr. 1193(1), 118–126 (1994)

    Article  Google Scholar 

  2. Gutierrez, M.A., Khanbareh, H., van der Zwaag, S.: Computational modeling of structure formation during dielectrophoresis in particulate composites. Comput. Mater. Sci. 112(A), 139–146 (2016)

    Article  Google Scholar 

  3. Kurgan, E.: Comparison of different force calculation methods in DC dielectrophoresis. Prz. Elektrotechniczn. 88(8), 11–14 (2012)

    Google Scholar 

  4. Kurgan, E., Gas, P.: An influence of electrode geometry on particle forces in AC dielectrophoresis. Prz. Elektrotechniczn. 86(1), 103–105 (2010)

    Google Scholar 

  5. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  6. Kurgan, E., Gas, P.: Calculation of forces imposed on particles in AC dielectrophoresis. Prz. Elektrotechniczn. 85(12), 100–103 (2009)

    Google Scholar 

  7. Kurgan, E.: Stress calculation in two-dimensional DC dielectrophoresis. Prz. Elektrotechniczn. 87(12B), 107–110 (2011)

    Google Scholar 

  8. Nicotra, O.E., La Magna, A., Coffa, S.: Particle-chain formation in a DC dielectrophoretic trap; a reaction-diffusion approach. Appl. Phys. Lett. 95(7), 073702 (2009)

    Article  Google Scholar 

  9. Ai, Y., Qian, S.Z.: DC dielectrophoretic particle–particle interactions and their relative motions. J. Colloid Interface Sci. 346(2), 448–454 (2010)

    Article  Google Scholar 

  10. Liu, L., Xie, C., Chen, B., Wu, J.K.: Iterative dipole moment method for calculating dielectrophoretic forces of particle–particle electric field interactions. Appl. Math. Mech. Engl. Ed. 36(11), 1499–1512 (2015)

    Article  MathSciNet  Google Scholar 

  11. Xie, C., Chen, B., Liu, L., Chen, H., Wu, J.: Iterative dipole moment method for the interaction of multiple dielectrophoretic particles in an AC electrical field. Eur. J. Mech. B Fluids 58, 50–58 (2016)

    Article  MathSciNet  Google Scholar 

  12. Liu, L., Xie, C., Chen, B., Chiu-On, N., Wu, J.: A new method for the interaction between multiple DEP particles: iterative dipole moment method. Microsyst. Technol. 22(9), 2223–2232 (2016)

    Article  Google Scholar 

  13. Kurgan, E.: Forces acting on multilayer dielectric particle in DC dielectrophoresis. Prz. Elektrotechniczn. 87(5), 92–95 (2011)

    Google Scholar 

  14. Kurgan, E.: Numerical computation of mutual force acting between two particles in DC dielectrophoresis. Prz. Elektrotechniczn. 88(12B), 213–216 (2012)

    Google Scholar 

  15. Kurgan, E.: Dipole moment calculation in two-dimensional DC dielectrophoresis. Prz. Elektrotechniczn. 86(12), 192–195 (2010)

    Google Scholar 

  16. Ciesla, A., Kraszewski, W., Skowron, M., Surowiak, A., Syrek, P.: Application of electrodynamic drum separator to electronic wastes separation. Gospod. Surow. Miner. Miner. Resourc. Manag. 32(1), 155–174 (2016)

    Google Scholar 

  17. Mathew, B., Alazzam, A., Destgeer, G., Sung, H.J.: Dielectrophoresis based cell switching in continuous flow microfluidic devices. J. Electrostat. 84, 63–72 (2016)

    Article  Google Scholar 

  18. Mhatre, S.: Dielectrophoretic motion and deformation of a liquid drop in an axisymmetric non-uniform AC electric field. Sens. Actuators B Chem. 239, 1098–1108 (2017)

    Article  Google Scholar 

  19. Ali, H., Park, C.W.: Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device. Korea Aust. Rheol. J. 28(4), 327–339 (2016)

    Article  Google Scholar 

  20. Hossan, M.R., Gopmandal, P.P., Dillon, R., Dutta, P.: A comprehensive numerical investigation of DC dielectrophoretic particle–particle interactions and assembly. Colloids Surf. A 506, 127–137 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Gas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kurgan, E., Gas, P. (2018). Mutual Forces Acting on Chains of Particles. In: Mazur, D., Gołębiowski, M., Korkosz, M. (eds) Analysis and Simulation of Electrical and Computer Systems. Lecture Notes in Electrical Engineering, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-319-63949-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63949-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63948-2

  • Online ISBN: 978-3-319-63949-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics