Advertisement

History and Impact of the International Peanut Genome Initiative: The Exciting Journey Toward Peanut Whole-Genome Sequencing

  • Hui Wang
  • Xiaohong Guo
  • Manish K. Pandey
  • Xiangyun Ji
  • Rajeev K. Varshney
  • Victor Nwosu
  • Baozhu GuoEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Peanut is one of the major oilseed crops in the world and is a staple food crop for much of the world. It also faces many challenges in production and possesses many opportunities in advancing science. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and brought to the international stage in 2006 to meet these challenges through coordination of international efforts in genome research beginning with molecular marker development and the improvement of genetic map resolution and coverage. The International Peanut Genome Initiative (IPGI) was the first committed step by the global peanut research community toward meeting these needs and challenges. Ultimately, a peanut genome sequencing project was initiated in 2010 by the Peanut Genome Consortium (PGC) and the genome sequences of two diploid peanut progenitors were published in 2016. During this time, IPGI and PGC have been guiding and leading demand-driven innovations in peanut genome research and translating the information into practical research and breeding. In this chapter, we review the background and history of IPGI and its achievement in developing improved genotypes using marker-assisted breeding. We also reviewed the development of peanut populations for high-resolution genetic and trait mapping, highlighting the transition to and preparation for next-generation, multi-parental genetic mapping populations from individual bi-parental populations.

Keywords

Genomics Genetic markers Peanut genome consortium (PGC) Genome sequencing 

Notes

Acknowledgements

We would like to express our appreciation to the International Peanut Genome Initiative (IPGI) and Peanut Genome Consortium (PGC), U.S. Peanut Industries and the leadership of the Peanut Foundation and American Peanut Council, particularly to Howard Valentine for his efforts to make this IPGI and PGC and peanut genome sequencing project a reality. We also thank Dr. Howard Shapiro of Mars Inc. for initiating discussions with BGI and opening the way for collaborations with Chinese researchers. We are grateful for the financial support from USDA-ARS, the Peanut Foundation, the Georgia Peanut Commission and the U.S. National Peanut Board, Mars Inc., Bill & Melinda Gates Foundation (Tropical Legumes I, II & III), Department of Biotechnology (DBT) of Government of India, and World Bank Assisted Watershed Development Project II (KWDP-II) by Government of Karnataka, India; and genome collaborators from China (Henan Academy of Ag. Sci., Oil Crops Research Institute of Chinese Academy of Ag. Sci., and Hi-Tech Center of Shandong Academy of Ag. Sci.). The work reported in this article was undertaken as a part of the CGIAR Research Program on Grain Legumes. ICRISAT is a member of the CGIAR.

References

  1. Bandillo N, Raghavan C, Muyco PA et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446CrossRefPubMedGoogle Scholar
  3. Boerma HR et al (2001) U.S. legume crops genomics workshop White Paper. Hunt Valley, MD, 30–31 July 2001 Google Scholar
  4. Branch WD, Brenneman TB, Hookstra G (2014) Field test results versus marker assisted selection for root-knot nematode resistance in peanut. Peanut Sci 41(2):85–89CrossRefGoogle Scholar
  5. Brown PJ, Upadyayula N, Mahone GS et al (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7(11):e1002383CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718CrossRefPubMedGoogle Scholar
  7. Burow MD, Simpson CE, Paterson AH et al (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breeding 2(4):307–319Google Scholar
  8. Burow MD, Starr JL, Park CH et al (2008) Identification of QTLs for resistance to early leaf spot (Cercospora arachidicola S. Hori) in an introgression population of peanut (Arachis hypogaea L.). In Proceedings of Plant and Animal Genome XVI, San Diego, p 424Google Scholar
  9. Burow MD, Leal-Bertioli SCM, Simpson CE (2013) Marker-assisted selection for biotic stress resistance in peanut. In:Varshney RK (ed) Translational Genomics for Crop Breeding, Biotic Stress, John Wiley & Sons Ltd: Chichester, UK, pp 125–150Google Scholar
  10. Burow MD, Starr JL, Park CH et al (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol breeding 34(2):393–406Google Scholar
  11. Cavanagh C, Morell M, Mackay I et al (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215–221CrossRefPubMedGoogle Scholar
  12. Chen X, Li H, Pandey MK et al (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113:6785–6790CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chu Y, Holbrook CC, Timper P et al (2007) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci 47(2):841–847. doi: 10.2135/cropsci2006.07.0474 CrossRefGoogle Scholar
  14. Chu Y, Wu CL, Holbrook CC et al (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4(2):110–117. doi: 10.3835/plantgenome2011.01.0001 CrossRefGoogle Scholar
  15. Church GT, Simpson CE, Burow MD et al (2000) Use of RFLP markers for identification of individuals homozygous for resistance to Meloidogyne arenaria in peanut. Nematology 2(5):575–580CrossRefGoogle Scholar
  16. Cook JP, McMullen MD, Holland JB et al (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158(2):824–834CrossRefPubMedGoogle Scholar
  17. Dickson DW (1998) Peanut. Barker KR(ed) Plant and nematode interactions. American Society of Agronomy Inc, Madison, pp 523–566Google Scholar
  18. Editorial Nature (2010) How to feed a hungry world. Nature 466:531–532CrossRefGoogle Scholar
  19. Edwards MD, Stuber CW, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116(1):113–125PubMedPubMedCentralGoogle Scholar
  20. Feng S, Wang X, Zhang X et al (2012) Peanut (Arachis hypogaea) expressed sequence tag (EST) project: progress and application. Comp Funct Genomics. doi: 10.1155/2012/373768 PubMedPubMedCentralGoogle Scholar
  21. Gajjar KN, Mishra GP, Radhakrishnan T et al (2014) Validation of SSR markers linked to the rust and late leaf spot diseases resistance in diverse peanut genotypes. Aust J Crop Sci 8(6):927–936Google Scholar
  22. Garcia GM, Stalker HT, Shroeder E et al (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39(5):836–845CrossRefPubMedGoogle Scholar
  23. Gepts P, Beavis WD, Brummer EC et al (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137(4):1228–1235CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guimaraes PM, Brasileiro ACM, Morgante CV et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387CrossRefGoogle Scholar
  25. Guimarães PM, Garsmeur O, Proite K et al (2008) BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol 8:14CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guo B, Chen X, Dang P et al (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo B, Chen X, Hong Y et al (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics 2009:715605. doi: 10.1155/2009/715605 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guo B, Chen CY, Chu Y et al (2012) Advances in genetics and genomics for sustainable peanut production. In: Benkeblia N (ed) Sustainable Agriculture and New Biotechnologies. CRC Press, Boca Raton, FL pp 341–367Google Scholar
  29. Guo B, Pandey MK, He G et al (2013) Recent advances in molecular genetic linkage maps of cultivated peanut (Arachis hypogaea L.). Peanut Sci 40(2):95–106. doi: 10.3146/PS13-03.1
  30. Guo B, Khera P, Wang H et al (2016) Annotation of trait loci on integrated genetic maps of Arachis species. In: Stalker T and Wilson R (eds) Peanuts: Genetics, processing, and utilization. The American Oil Chemists’ Society (AOCS), San Diego, pp 163–208Google Scholar
  31. Holbrook CC, Culbreath AK (2007) Registration of ‘Tifrunner’peanut. J Plant Reg 1(2):124CrossRefGoogle Scholar
  32. Holbrook CC, Stalker HT (2003) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356Google Scholar
  33. Holbrook CC, Timper P, Culbreath A et al (2008) Registration of ‘Tifguard’ peanut. J Plant Reg 2(2):92–94CrossRefGoogle Scholar
  34. Holbrook CC, Isleib TG, Ozias-Akins P et al (2013) Development and phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci 40(2):89–94CrossRefGoogle Scholar
  35. Hou H, Liao B, Lei Y et al (2007) Identification of AFLP markers for resistance to peanut rust. Chin J Oil Crop Sci 29(2):89–92Google Scholar
  36. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole genome resequencing. Genome Res 19:1068–1076CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang BE, George AW, Forrest KL et al (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10(7):826–839CrossRefPubMedGoogle Scholar
  38. Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128(6):999–1017CrossRefPubMedGoogle Scholar
  39. Jung S, Powell G, Moore K et al (2000a) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. II. Molecular basis and genetics of the trait. Mol Gen Genet 263(5):806–811CrossRefPubMedGoogle Scholar
  40. Jung S, Swift D, Sengoku E et al (2000b) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263(5):796–805CrossRefPubMedGoogle Scholar
  41. Katam R, Gottschalk V, Survajahala P et al (2014) Advances in proteomics research for peanut genetics and breeding. In: Mallikarjuna N, Varshney RK (eds) Genetics, Genomics and Breeding of Peanuts. CRC Press, Boca Raton, pp 161–177Google Scholar
  42. Khedikar YP, Gowda MVC, Sarvamangala C et al (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121(5):971–984CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khera P, Pandey MK, Wang H, Feng S, Qiao L, Culbreath AK, Kale S, Wang J, Holbrook CC, Zhuang W, Varshney RK, Guo BZ (2017) Mapping quantitative trait loci of resistance to Tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE (accepted)Google Scholar
  44. Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kump KL, Bradbury PJ, Wisser RJ et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168CrossRefPubMedGoogle Scholar
  46. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  47. Leal-Bertioli SC, José AC, Alves-Freitas DM et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li Y, Willer CJ, Ding J et al (2010) Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34(8):816–834CrossRefPubMedPubMedCentralGoogle Scholar
  49. Luo M, Dang P, Guo B et al (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45(1):346–353CrossRefGoogle Scholar
  50. Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339CrossRefPubMedGoogle Scholar
  51. McMullen MD, Kresovich S, Villeda HS et al (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740CrossRefPubMedGoogle Scholar
  52. Mishra GP, Radhakrishnan T, Kumar A et al (2015) Advancements in molecular marker development and their applications in the management of biotic stresses in peanuts. Crop Prot 77:74–86CrossRefGoogle Scholar
  53. Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breeding 129(1):68–71CrossRefGoogle Scholar
  54. Mondal S, Badigannavar AM, Murty GSS (2007) RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 159(1):233–239CrossRefGoogle Scholar
  55. Mondal S, Badigannavar AM, D’Souza SF (2012a) Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188(2):163–173CrossRefGoogle Scholar
  56. Mondal S, Badigannavar AM, D’Souza SF (2012b) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29(2): 467–476Google Scholar
  57. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mott R, Talbot CJ, Turri MG et al (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci 97(23):12649–12654CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nagy E, Chu Y, Guo Y et al (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26(2):357–370CrossRefGoogle Scholar
  60. Norden AJ, Corbet DW, Knauft DA et al (1987) Variabilityin oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14(1):7–11CrossRefGoogle Scholar
  61. Pandey MK, Guo B, Holbrook CC et al (2014a) Molecular markers, genetic maps and QTLs for molecular breeding in peanut. In: Mallikarjuna N (ed) Genetics, genomics and breeding of peanuts. CRC Press, Boca Raton, pp 61–113Google Scholar
  62. Pandey MK, Wang ML, Qiao L et al (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pandey MK, Upadhyaya HD, Rathore A et al (2014c) Genome wide association studies for 50 agronomic traits in peanut using the ‘Reference Set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 9(8):e105228CrossRefPubMedPubMedCentralGoogle Scholar
  64. Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335(6192):721–726CrossRefPubMedGoogle Scholar
  65. Pípolo VC, Meagher MG, Dickson DW et al (2014) Molecular marker screening of peanut (Arachis hypogaea L.) germplasm for Meloidogyne arenaria resistance. Afr J Biotechnol 13(26):2608–2612CrossRefGoogle Scholar
  66. Poormohammad Kiani S, Maury P, Nouri L et al (2009) QTL analysis of yield-related traits in sunflower under different water treatments. Plant Breeding 128(4):363–373CrossRefGoogle Scholar
  67. Proite K, Leal-Bertioli SC, Bertioli DJ et al (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7CrossRefPubMedPubMedCentralGoogle Scholar
  68. Qin H, Feng S, Chen C et al (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124(4):653–664CrossRefPubMedGoogle Scholar
  69. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13(2):174–180CrossRefPubMedGoogle Scholar
  70. Rakshit S, Rakshit A, Patil JV (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91(1):111–117CrossRefPubMedGoogle Scholar
  71. Ray TK, Holly SP, Knauft DA et al (1993) The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12–desaturase activity. Plant Sci 91(1):15–21CrossRefGoogle Scholar
  72. Riedelsheimer C, Lisec J, Czedik-Eysenberg A et al (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci 109(23):8872–8877CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122(1):49–59CrossRefGoogle Scholar
  74. Shoba D, Manivannan N, Vindhiyavarman P et al (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188(2):265–272CrossRefGoogle Scholar
  75. Shokes FM, Culbreath AK (1997) Early and late leaf spots. In: Kokalis-Burrell N (ed) Compendium of peanut diseases. APS Press, Paul, pp p17–p20Google Scholar
  76. Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18(1):22–26CrossRefGoogle Scholar
  77. Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41(3):918CrossRefGoogle Scholar
  78. Simpson CE, Starr JL, Church GT et al (2003) Registration of NemaTAM peanut. Crop Sci 43(4):1561CrossRefGoogle Scholar
  79. Stalker HT, Mozingo IG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28(2):117–123CrossRefGoogle Scholar
  80. Subrahmanyam P, Ramanatha Rao V, McDonald D et al (1989) Origins of resistances to rust and late leaf spot in peanut (Arachis hypogaea, Fabaceae). Econ Bot 43(4):444–455CrossRefGoogle Scholar
  81. Subramanian G, Adams MD, Venter JC et al (2001) Implications of the human genome for understanding human biology and medicine. J Am Med Assoc 286(18):2296–2307CrossRefGoogle Scholar
  82. Sujay V, Gowda MVC, Pandey MK et al (2012) QTL analysis and construction of consensus genetic map for foliar diseases resistance based on two RIL populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30(2): 773–788Google Scholar
  83. Tian F, Bradbury PJ, Brown PJ et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162CrossRefPubMedGoogle Scholar
  84. Trebbi D, Maccaferri M, Giuliani S et al (2008) Development of a multi-parental (four-way cross) mapping population for multiallelic QTL analysis in durum Wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds.) Proceedings of the 11th international wheat genetics symposium, Sydney University, Australia, 24–29 August 2008Google Scholar
  85. Valentine H, Grabau E, Ozias-Akins P et al (2006) Biotech Peanut White Paper: Benefits and Issues. VA, American Peanut Council, Alexandria, p 14Google Scholar
  86. Varma TSN, Dwivedi SL, Pande S et al (2005) SSR markers associated with resistance to rust (Puccinia arachidis Speg.) in groundnut (Arachis hypogaea L.). SABRAO J Breed Genet 37(2):107–119Google Scholar
  87. Varman PV (1999) A foliar disease resistant line developed through interspecific hybridization in groundnut (Arachis hypogaea). Indian J Agri Sci 69(1):67–68Google Scholar
  88. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55CrossRefPubMedGoogle Scholar
  89. Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24(11):490–499CrossRefPubMedGoogle Scholar
  90. Varshney RK, Mohan SM, Gaur PM et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134CrossRefPubMedGoogle Scholar
  91. Varshney RK, Pandey MK, Janila P et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781CrossRefPubMedPubMedCentralGoogle Scholar
  92. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351CrossRefPubMedGoogle Scholar
  93. Verbyla AP, George AW, Cavanagh CC et al (2014) Whole genome QTL analysis for MAGIC. Theor Appl Genet 127(8):1753–1770CrossRefPubMedGoogle Scholar
  94. Wang H, Shi Y, Ren Y et al (2008) Development of SSR markers for root-knot nematode resistance in peanut. Journal of Peanut Science 37(2):14–17Google Scholar
  95. Wang Q, Zhang X, Tang F et al (2010) Construction of genetic linkage map of peanut (Arachis hypogaea L.) based on SRAP markers. Chin J Oil. Crop Sci 32(3):374–378Google Scholar
  96. Wang H, Pandey MK, Qiao L et al (2013) Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘Tifrunner’ × ‘GT-C20’ in peanut. Plant Genome 6(3):1–10CrossRefGoogle Scholar
  97. Wang ML, Khera P, Pandey MK et al (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 10(4):e0119454CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang H, Guo X, Pandey M et al (2016) Phenotypic assessments of peanut nested association mapping (NAM) populations. Phytopathology 106(S2):15Google Scholar
  99. Wilson RF (2006a) National Program Action Plan for the Peanut Genome Initiative: Application of Plant Genomics to Mitigate Peanut Allergy. Beltsville, USDA, p 25Google Scholar
  100. Wilson RF (2006b) National Strategic Plan for the Peanut Genome Initiative 2004–2008. Beltsville, USDA, p 19Google Scholar
  101. Wilson RF, Stalker HT, Brummer CE (2004) Genomics for Legume Crops. Amer Oil Chemical Soc Press, Champaign, p 362Google Scholar
  102. Xia Y, Liao B, Li J et al (2007) Identification of AFLP markers linked to resistance to late leaf spot in peanut (Arachis hypogaea L.). Chin J Oil. Crop Sci 29(3):318–321Google Scholar
  103. Yamamoto E, Iwata H, Tanabata T et al (2014) Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genet 15:50CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yol E, Upadhyaya HD, Uzun B (2015) Molecular diagnosis to identify new sources of resistance to sclerotinia blight in groundnut (Arachis hypogaea L.). Euphytica 203(2):367–374CrossRefGoogle Scholar
  105. Yu J, Holland JB, McMullen MD et al (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551CrossRefPubMedPubMedCentralGoogle Scholar
  106. Yuksel B, Paterson AH (2005) Construction and characterization of a peanut HindIII BAC library. Theor Appl Genet 111(4):630–639CrossRefPubMedGoogle Scholar
  107. Zhang M, Montooth KL, Wellset MT et al (2005) Mapping Multiple Quantitative Trait Loci by Bayesian Classification. Genetics 169(4):2305–2318CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhang J, Liang S, Duan J et al (2012) De novo assembly and Characterisation of the Transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genom 13:90CrossRefGoogle Scholar
  109. Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG (outside the USA) 2017

Authors and Affiliations

  • Hui Wang
    • 1
    • 2
  • Xiaohong Guo
    • 1
    • 2
    • 3
  • Manish K. Pandey
    • 4
  • Xiangyun Ji
    • 1
    • 2
    • 5
  • Rajeev K. Varshney
    • 4
  • Victor Nwosu
    • 6
  • Baozhu Guo
    • 1
    Email author
  1. 1.USDA-ARSTiftonUSA
  2. 2.University of GeorgiaTiftonUSA
  3. 3.Heilongjiang Bayi Agricultural UniversityDaqingChina
  4. 4.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  5. 5.Ecological Environment Protection Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
  6. 6.Plant Science Program Research and DevelopmentMARS Chocolate North AmericaHackettstownUSA

Personalised recommendations