Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 373 Accesses

Abstract

In this chapter the basic concepts and notation related to the physics of the early universe are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gamow, Expanding universe and the origin of elements. Phys. Rev. 70, 572–573 (1946)

    Article  ADS  Google Scholar 

  2. R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)

    Article  ADS  Google Scholar 

  3. R.A. Alpher, R.C. Herman, On the relative abundance of the elements. Phys. Rev. D 74 (1948)

    Google Scholar 

  4. R.A. Alpher, R.C. Herman, Remarks on the evolution of the expanding universe. Phys. Rev. D 75 (1949)

    Google Scholar 

  5. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J. 142 (1965)

    Google Scholar 

  6. D.S. Gorbunov, D.A. Rubakov, Introduction to the Theory of the Early Universe (World Scientific, 2011)

    Google Scholar 

  7. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008)

    Article  ADS  Google Scholar 

  8. K.A. Olive, G. Steigman, T.P. Walker, Primordial nucleosynthesis: theory and observations. Phys. Rept. 333, 389–407 (2000)

    Article  ADS  Google Scholar 

  9. W.M. Yao et al., Review on Big-bang nucleosynthesis in review of particle physics. J. Phys. 33 (2005)

    Google Scholar 

  10. G. Steigman, Primordial nucleosynthesis: successes and challenges. Int. J. Mod. Phys. E 15, 1–36 (2006)

    Article  ADS  Google Scholar 

  11. R.H. Cyburt, B.D. Fields, K.A. Olive, E. Skillman, New BBN limits on physics beyond the standard model from \(^4He\). Astropart. Phys. 23, 313–323 (2005)

    Article  ADS  Google Scholar 

  12. A. Bazavov et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014)

    Article  ADS  Google Scholar 

  13. A. Borriello, P. Salucci, The dark matter distribution in disk galaxies. Mon. Not. Roy. Astron. Soc. 323, 285 (2001)

    Article  ADS  Google Scholar 

  14. H. Hoekstra, H. Yee, M. Gladders, Current status of weak gravitational lensing. New Astron. Rev. 46, 767–781 (2002)

    Article  ADS  Google Scholar 

  15. R.B. Metcalf, L.A. Moustakas, A.J. Bunker, I.R. Parry, Spectroscopic gravitational lensing and limits on the dark matter substructure in Q2237+0305. Astrophys. J. 607, 43–59 (2004)

    Article  ADS  Google Scholar 

  16. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  17. E. Komatsu et al., Five-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009)

    Google Scholar 

  18. M. Tegmark et al., The 3-D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702–740 (2004)

    Article  ADS  Google Scholar 

  19. D. Hooper, Particle dark matter, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics on The dawn of the LHC era (TASI 2008) (2010), pp. 709–764

    Google Scholar 

  20. G.B. Gelmini, TASI 2014 Lectures: The hunt for dark matter, in Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014) Boulder, Colorado, June 2–27, 2014 (2015)

    Google Scholar 

  21. F.D. Steffen, Dark matter candidates-axions, neutralinos, gravitinos, and axinos. Eur. Phys. J. C 59, 557–588 (2009)

    Google Scholar 

  22. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Article  ADS  Google Scholar 

  23. K. Sato, First order phase transition of a vacuum and expansion of the universe. Mon. Not. Roy. Astron. Soc. 195, 467–479 (1981)

    Article  ADS  Google Scholar 

  24. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)

    Article  ADS  Google Scholar 

  25. A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)

    Article  ADS  Google Scholar 

  26. A. Riotto, Baryogenesis and leptogenesis. J. Phys. Conf. Ser. 335, 012008 (2011)

    Article  Google Scholar 

  27. A.G. Cohen, A. De Rujula, S.L. Glashow, A Matter-antimatter universe? Astrophys. J. 495, 539–549 (1998)

    Google Scholar 

  28. D. Larson et al., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011)

    Google Scholar 

  29. M.S. Turner, Intersection Between Particle Physics and Cosmology, vol. 1 (World Scientific, Singapore, 1986), pp. 99

    Google Scholar 

  30. I. Affleck, M. Dine, A new mechanism for baryogenesis. Nucl. Phys. B 249, 361 (1985)

    Article  ADS  Google Scholar 

  31. A.D. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967); Usp. Fiz. Nauk. 161, 61 (1991)

    Google Scholar 

  32. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, 1988) p. 719

    Google Scholar 

  33. G.F. Giudice, E.W. Kolb, A. Riotto, Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 64, 023508 (2001)

    Article  ADS  Google Scholar 

  34. S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)

    Article  ADS  Google Scholar 

  35. S. Dimopoulos, L. Susskind, On the baryon number of the universe. Phys. Rev. D 18, 4500–4509 (1978)

    Google Scholar 

  36. G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976)

    Google Scholar 

  37. M.C. Chen, TASI 2006 Lectures on Leptogenesis, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics:Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006) (2007), pp. 123–176

    Google Scholar 

  38. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)

    Article  ADS  Google Scholar 

  39. F.R. Klinkhamer, N.S. Manton, A saddle point solution in the Weinberg-Salam theory. Phys. Rev. D 30, 2212 (1984)

    Article  ADS  Google Scholar 

  40. P.B. Arnold, L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D 36, 581 (1987)

    Article  ADS  Google Scholar 

  41. P.B. Arnold, D. Son, L.G. Yaffe, The hot baryon violation rate is O (alpha-w**5 T**4). Phys. Rev. D 55, 6264–6273 (1997)

    Article  ADS  Google Scholar 

  42. Y. Burnier, M. Laine, M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover. JCAP 0602, 007 (2006)

    Article  ADS  Google Scholar 

  43. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2 pi decay of the k(2)0 meson. Phys. Rev. Lett. 13, 138–140 (1964)

    Article  ADS  Google Scholar 

  44. H. Burkhardt et al., First evidence for direct CP violation. Phys. Lett. B 206, 169–176 (1988)

    Article  ADS  Google Scholar 

  45. G.D. Barr et al., A new measurement of direct CP violation in the neutral kaon system. Phys. Lett. B 317, 233–242 (1993)

    Article  ADS  Google Scholar 

  46. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  47. C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation. Phys. Rev. Lett. 55, 1039 (1985)

    Article  ADS  Google Scholar 

  48. M.B. Gavela, M. Lozano, J. Orloff, O. Pene, Standard model CP violation and baryon asymmetry. part 1: zero temperature. Nucl. Phys. B 430, 345–381 (1994)

    Article  ADS  Google Scholar 

  49. M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, C. Quimbay, Standard model CP violation and baryon asymmetry. part 2: finite temperature. Nucl. Phys. B 430, 382–426 (1994)

    Article  ADS  Google Scholar 

  50. K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, The electroweak phase transition: A nonperturbative analysis. Nucl. Phys. B 466, 189–258 (1996)

    Article  ADS  Google Scholar 

  51. M. Losada, High temperature dimensional reduction of the MSSM and other multiscalar models. Phys. Rev. D 56, 2893–2913 (1997)

    Article  ADS  Google Scholar 

  52. M. Carena, G. Nardini, M. Quiros, C.E.M. Wagner, The baryogenesis window in the MSSM. Nucl. Phys. B 812, 243–263 (2009)

    Article  ADS  MATH  Google Scholar 

  53. A.G. Cohen, D.B. Kaplan, Spontaneous baryogenesis. Nucl. Phys. B 308, 913 (1988)

    Article  ADS  Google Scholar 

  54. M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  55. W. Buchmuller, R.D. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci. 55, 311–355 (2005)

    Article  ADS  Google Scholar 

  56. J.A. Harvey, M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation. Phys. Rev. D 42, 3344–3349 (1990)

    Article  ADS  Google Scholar 

  57. R.N. Mohapatra, X.-M. Zhang, QCD sphalerons at high temperature and baryogenesis at electroweak scale. Phys. Rev. D 45, 2699–2705 (1992)

    Article  ADS  Google Scholar 

  58. S. Yu, M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation. Nucl. Phys. B 308, 885–912 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Biondini .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biondini, S. (2017). Baryon Asymmetry in the Early Universe. In: Effective Field Theories for Heavy Majorana Neutrinos in a Thermal Bath. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63901-7_2

Download citation

Publish with us

Policies and ethics